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1 Introduction

The following notes document the talks we attended at INFORMS 2022. Any mistake or misrepresentation
of the work is our own and not the presenters' fault. Please contact us if we misunderstood your work and
would like us to correct it!

2 Sunday, October 16, 2022

2.1 Session: Delegated Sequential Search

2.1.1 Optimal Presentation of Alternatives

1. Authors: Zeya Wang, Morvarid Rahmani, Karthik Ramachandran, Georgia Institute of Technology.

2. Working paper.

Abstract

In many contexts such as technology and management consulting, clients seek the expertise of
providers to �nd solutions for their problems. When there are multiple alternatives that could
potentially solve the client's problem, providers can lead the client's exploration by choosing
which alternative(s) to present and in what sequence. In this paper, we develop a dynamic
game-theoretic model where the provider chooses how to present alternative solutions, and the
client chooses which solution to try. Our analysis reveals that it is generally optimal for the
provider to o�er alternatives sequentially. Following a failed trial, the provider should readily
o�er a new alternative if the client's capability is either very high or very low. Otherwise, the
provider should allow the client to try the same solution multiple times, especially when the
project duration is long.

3. Gamma Therapeutics Example

(a) Pharmaceutical company to treat cancer

(b) Founder is a brilliant scientist but limited expertise in getting the therapeutic approved by the
FDA (brief time window of time/runways)

(c) The entrepreneur is under time pressure since the company needs to report advances to investors

(d) Imperfect operations, compared to more established companies

4. (a) Some of these observations apply to other startups

(b) Most of them fail.

(c) How to increase the chances of startup success?

5. Mentoring

(a) External advisors/experts

(b) Incubators (increases the success ratio of startups signi�cantly).

(c) Accelerators

6. Mentoring entrepreneurs:

(a) The context is:

i. has a problem that needs to be solved but no direction
ii. Advisor is aware of solutions

7. Research question
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(a) How should an advisor recommend alternative solutions to an entrepreneur?

(b) Taking into account the constraints of the particular startup

8. Solution: a sequential decision model

(a) At each round advisor selects a set of options

(b) Entrepreneur selects a solution from the set

9. Outcomes:

(a) Solution implemented

(b) Entrepreneurs choose not to follow the advice and terminate their relationship with the advisor

10. Alternatives

(a) Only two alternatives � a ; � b 2 [0; 1], viable or not

(b) entrepreneur operational capability, 
 2 [0; 1]

(c) Success probability 
�

11. Evolution of beliefs

(a) Posterior belief updates using Bayes RuleP r (option a being viableja failed) = (1 � 
 ) � 1

1� 
� a

if 
 = 0, there in no learning, that is � 1
a = � a

if 
 = 1, there is complete learning, that is � 1
a = 0

(b) In each round, both update their beliefs

12. Analytic results

(a) Author shows equilibrium strategies (� �
1; � �

2)

(b) The equilibrium depends on the e�ectiveness of the alternatives presented by the advisor and the
entrepreneur's operational capability.

13. Other results

(a) E�ect of trial cost

(b) E�ect number of alternative solutions

14. Takeaways

(a) Advisor should strategically sequence their recommendation.

(b) First recommends inferior before superior alternative.

(c) Entrepreneurs' operational capability matters.
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2.2 Plenary: Cynthia Rudin.
Do Simpler Machine Learning Models Exist and How Can We Find Them?

Abstract

While the trend in machine learning has tended towards building more complicated (black box)
models, such models are not as useful for high stakes decisions - black box models have led to
mistakes in bail and parole decisions in criminal justice, 
awed models in healthcare, and inexplicable
loan decisions in �nance. Simpler, interpretable models would be better. Thus, we consider questions
that diametrically oppose the trend in the �eld: for which types of datasets would we expect to
get simpler models at the same level of accuracy as black box models? If such simpler-yet-accurate
models exist, how can we use optimization to �nd these simpler models? In this talk, I present an
easy calculation to check for the possibility of a simpler (yet accurate) model before computing one.
This calculation indicates that simpler-but-accurate models do exist in practice more often than you
might think. Also, some types of these simple models are (surprisingly) small enough that they can
be memorized or printed on an index card.

1. COMPAS, a proprietary model for recidivism.

(a) Wondering how accurate COMPAS was.

(b) Compared COMPAS vs. CORELS.

(c) CORELS produces a tiny model, a simple tree. Basically, as a function of priors.

(d) The main point is that this model was as accurate as COMPAS, which is a more complicated
model.

(e) given the high-stakes nature of the application, is it natural to ask why do we need proprietary
models in this case?

2. 2HELPS2B: another example is preventing brain damage in Critically ill patients.

(a) Tiny model (�ts in a slide)

(b) Just as accurate as black box models

(c) doctors can decide whether to trust it

3. Problem spectrum: we think about the following two categories of data/problems very di�erently!

(a) Tabular

i. categorical data; counts mostly
ii. more robust to small changes

(b) Raw

i. pixels, words, parts of sound waves
ii. change one pixel, and you no longer have a realistic example

4. Rudin's theory: the Rashomon Set theory

(a) Assume: there are a lot of good models

(b) If the set of simple models is a good cover for good models, there should be at least one simple,
good model.

(c) Claim: Rashomon set large in many problems of interest.

(a) On the existence of simpler machine learning model (insert link), they found that Large Rashomon
sets are correlated with

i. the existence of simple models and
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ii. many di�erent ML methods having the same performance
iii. that is, if you run many ML models and they all have similar performance, then think of a

large Rashomon set.

(b) Implication: if the theory holds Optimizing for simplicity won't sacri�ce performance.
This is really important in real-world, high-stakes applications.

5. Explainable Machine Learning Challenge (HELOC dataset)

(a) Data about 10k application, many factors/features

(b) Best black-box accuracy (boosted decision trees 73%)

(c) Best black box AUC (2-layer NN) .8

6. Their method is a generalized additive model.

(a) Fast Sparse Classi�cation for Generalized Linear and Additive Models (insert link)

(b) Tested on the FICO dataset. Similar performance but again...

(c) resulting model is tiny (compared to black-box) and �ts in one slide.

i. consists of 21 total step features
ii. moreover, is created in under 3.85 seconds.

(d) Their methods in basically a Sparse Logistic Regression

i. trying to set coe�cients to 0 as much as possible
ii. using exponential loss so that there is an analytical formula for each coe�cient

7. Summary so far

(a) Rashomon set:

i. simpler model exists when there are many good models.
ii. If you have a Rashomon set, some algorithms can �nd sparse (tiny) accurate model
iii. Even on competition (complicated) datasets, they �nd an interpretable model.

8. Observation:

(a) ML community has mostly been concerned with building complex models and worrying about
over�tting

(b) Rudin wants to go the opposite way and build simpler models. Under learning theory, we wouldn't
have to worry about over�tting with simple models.

9. Optimal Sparse Decision Tress (GOSDT algorithm, insert link)

(a) Optimized for misclassi�cation error plus sparsity of the tree

(b) Example usage on the Broward Country Florida re-arrest data

(c) Another example is on the FICO dataset.

10. The universal paradigm of machine learning

(a) Training Set � > Algorithm � > Predictive Model

(b) Claim: this is wrong! (at least for high-stakes applications)

11. Proposal:

(a) If there are large Rashomon sets, let experts choose among the simple ones from them

(b) Show the entire Rashomon set to experts!

(c) Paper: Exploring the whole Rashomon set of sparse Decision Trees. TreeFARMS returns all
almost-optimal trees. (insert link).

(d) TimberTrek: Visualizing all Tress

(e) Exploring the Whole Rashomon Set of Sparse Decision Trees
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2.3 Session: Machine Learning in Finance

2.3.1 Data Driven Security Selection for Wealth Management

1. Authors: Sikun Xu, Ali Hirsa, Miao Wang, Federico Klinkert

2. Paper?

Abstract

In this research we established a data driven system for wealth management. The wealth man-
agement system consists of four major modules: security selection, asset allocation, portfolio
optimization and risk management. It utilizes a large variety of data including fund perfor-
mance, alternative data, macroeconomic indicators, etc., to assist dynamic and robust portfolio
decisions. We designed a dynamic, explainable and automated pipeline of machine learning
and deep learning models to process the large amount of hetero-structured data. We tested our
system in the U.S. mutual fund market and in comparison to traditional wealth management
methodologies, we are able to achieve superior performance.

3. Wealth Management How do you invest$100k? To answer this question, we need to answer other
questions.

what is your risk-return expectation what are the available assets, etc.

Focus for the talk on mutual funds

4. There are �ve components

security clustering security selection (*) asset allocation portfolio construction risk management

5. Focus on security selection

Goal: select the top-performing funds within an asset category.

Input/data: macroeconomic indicators mutual fund performance mutual fund alternative data (e.g.,
who is the fund's manager, location, etc.?)

6. Framework

embedding dimension reduction

forecasts times series

Explanation: we need to understand black-box predictions

ranking

7. training process is di�erent:

Expanding-window training process instead of traditional cross-validation

8. embedding categories time-series dimension reduction apply PCA rolling to over 600 macroeconomic
indicators The top 15 pricing components explain over 90% of the variance time embedding dimension
reduction for cross-sectional features

9. forecast

overlapping data samples

takeaways reduce overlapping data use simpler models generate synthetic data to enrich the training
set

10. Results not so good out of sample

11. Explainability Local Interpretable Model-Agnostic Explanation (LIME)
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12. Dynamic Model adjustment Given a portfolio of predictors, we can dynamically take a weighted average
of them based on their out-of-sample performance. Every n days (n is a hyper-parameter), update
weights. Not clear how to choose n.

Improve overall performance and stabilize forecasts

13. Regime detection

Assume that a discrete number of regimes exist in the market, and the performance of mutual funds
is similar within a regime.

Use HMM with Gaussian distribution rolling window.

14. Regime evolution

Gaussian distribution allows us to visualize the evolution of regimes under di�erent macroeconomic
situations.

15. Conclusion, end-to-end data-driven framework for selecting the top-performing funds

automating the decision process for wealth management

2.4 Session: Black-box Optimization: Algorithms and Applications

2.4.1 Linewalker: Line Search for Black Box Derivative-Free Optimization and Surrogate
Model Construction

1. Authors: Dimitri Papageorgiou et. al. ExxonMobil Research & Engineering

2. Paper: ?

Abstract

We present a simple, but e�ective sampling method for learning the extrema of a discrete ap-
proximation of a multi-dimensional function along a one-dimensional line segment of interest.
The method does not rely on derivative information and the function to be learned can be a
"black box" function that must be queried via simulation or other means. We assume that
the underlying function being approximated is noise-free and smooth. However, the Algorithm
can still be e�ective when the underlying function is non-di�erentiable and possibly discontinu-
ous. Numerous examples are shown to illustrate the Algorithm's competitiveness and potential
superiority relative to state-of-the-art methods like NOMAD and Bayesian optimization.

3. Given a smooth function

(a) Goal, �nd global optimal and

(b) create a good surrogate

(c) applications
1 D line search, a.k.a. learning rate

4. Addressing the elephant in the room who cares about 1D functions? Isn't this too limiting?

5. author �rst shows results, then details of the algorithm linewalker.

author shows a galley of test functions nasty, non-convex functions also, non-smooth functions sanity
check on the performance of algorithms!

6. Fixing a test bead: NOMAD, one of the best derivative-free optimization solvers author's Algorithm:
linewalker Bayes Optimization work very well

7. Surrogate approximations
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8. total absolute scaled error metric how much of the (total absolute) error of the Mediocre method is
explained by the Alternative Method? Insert Link.

9. The Linewalker Algorithm

(a) Visual explanation.

(b) Build and approximate function.

(c) Look at the extrema (minima) of the approximate function build a new approximation then choose
the next extrema (very similar to Bayesian optimization)

(d) after a number of samples, break out of the regime and picks the maximum

(e) More details on the Algorithm

i. again, start with an approximation
ii. pick a point

A. TABU structure:
do not revisit recently-sampled regions too frequently

B. explore (before it was always exploiting)
C. sample slightly away from an extremum

This exploits the structure of the 1D case, where it is easy to come up with sampling a
bit to the left or to the right.

10. Extensions

Handling Noisy functions. Still a work in progress.

11. Questions: do we actually want to �nd the global optima of some of the nasty functions on the test
bead? It depends on the application!

2.4.2 Branch-and-Model: A Derivative-free Global Optimization Algorithm

1. Authors: Kaiwen Ma et al. Carnegie Mellon University

2. Paper: ?

Abstract

Derivative-free optimization (DFO) is an important class of optimization algorithms that solve
problems based on objective and function evaluations. DFO methods have enormous practical
potential to address problems where derivatives are unavailable, unreliable, or only available at
a signi�cant cost. In this work, we present a novel derivative-free global algorithm Branch-and-
Model (BAM). The BAM algorithm utilizes a 
exible partition scheme and model-based search
techniques, which exploit the local trend and speed up the convergence in solution re�nement.
The BAM algorithm is guaranteed to converge to the globally optimal function value under mild
assumptions. Extensive computational experiments over 500 publicly open-source test problems
show that BAM outperforms state-of-the-art DFO algorithms, especially for higher-dimension
problems.

3. Black-box (Data-Drive) Optimization. Why?

(a) Simulators

(b) Experimental facilities

(c) Hyperparameter tuning

4. Setting: we have a box that we can query without much more information.
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5. Timeline on work around black-box optimization

6. Experimental setup

(a) Limit of 2500 function evaluations

(b) solved if within 1% of global optimum

(c) 10 random starting points for each problem

(d) run through algebraic solver to get actual optimum

Look at the fraction of problems solved as the probability that the Algorithm �nds the optimal solution.

7. Global BBO algorithms invoke a search element to escape from local optima

DIRECT (Jones et al. 1993) How to subdivide? Where to sample? Partition search space into boxes.
Sample "middle of the box" Decide which box to sample next. We need to ensure the boxes shrink in
every dimension.

This framework works in simulations but not in experiments.

8. Branch and Model (as opposed to Branch and model)

Start with a Latin Hypercube Sampling (LHS) We don't want a priori search boxes. We want boxes
to be dynamic and use representative given the data. Project each sample point into its axis. You can
show this will yield one point per box.

Assume that there is a Lipschitz kind of condition within each box. Now, pick a box whose lower
bound is below all other boxes.

9. the �nal Algorithm, BAM, performs well in di�erent benchmarks with respect to the di�erent experi-
mental criteria. Scales to start solving problems around 30 dimensions.

10. Other resources, look at ALAMO algorithm to exploit local trends BARON )best subset selection).

11. Questions: constraints? No constraints other than penalizing the objective function.
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2.5 Session: Bayesian Learning under Strategic Interactions

2.5.1 Learning to Lend Under Adverse Selection

1. Authors: Yifan Feng, Jussi Keppo, National University of Singapore, Singapore, Singapore.

2. Paper: ?

Abstract

We consider a dynamic pricing problem for a lender who repeatedly interacts with a borrower
who has private information about his own default probability and strategically decides whether
to accept the loan o�ers. We show that if the lender can commit to a simple markup policy,
then asymptotically the information rent can be entirely o�set by the bene�t of learning. In
addition, if the lender is su�ciently patient, she always lends the �rst loan at a low rate, which
contrasts the implications of a static Akerlof-type model.

3. Personal Loans via Big data The missing data challenge Not all data is available We can link missing
data to the strategic behavior of participants

4. Example Akerlof (1970) Information asymmetry leading to information rent and market ine�ciency
Sellers and buyers Only sellers know the quality At equilibrium, high-quality-product sellers are driven
out of the market. This is known as adverse selection without information assymetry the market could
be more e�cient. This work is about overcoming adverse selection

5. Model in the context of lending Borrow has private information � 2 � L � H , low is good, high is bad
(high chance of default).

Borrower Borrow money for a project Probability fail p� If it fail, the borrow defaults Otherwise, the
borrower pas in full at maturity

v� (r ) : expected utility of the loaned project with interest rate.

Assume existence of reservation interest rate (makes borrow indi�erent between borrowing or notr �

Lender

Only knows the distribution of borrowers.

u(r; x ) : utility of the loan for project with interest rate r and outcomex 2 (success, fail)

assume reservation rate ~r �

6. Key Assumptions

Trading is e�cient without information asymmetry. For every type � , r � > ~r �

Adverse election,p� > p � 0 if and only if borrower's reservation price r � > r � 0

7. Adverse Select and Market ine�cient

Suppose the fraction of high-type borrower isb 2 (0; 1).

When b is su�ciently high, only high-type borrowers will rate.

Hence, the market is ine�cient; it drives low-type borrowers out of it.

8. Research question

Can historical data be used to Mitigate market ine�ciency Improve the lender's pro�t performance

9. Dynamic Model

Lender interacts with Borrower repeatedly. Each time getting some noisy signals.

Data Project: t Interest rate: r t Accept? at no, at = 0 nothing happens yes, at = 1, then observe
success or fails Repeat over time

11



10. Formulation The lender now has to think about a policy � : history 7! r t .

Utility: total discounted average utility (conditional on borrowers' type.

11. Lender wants to solve an optimization problem to �nd the optimal policy. Also, measure trading
intensity as a metric for market e�ciency.

12. they study a family of "low-then-high" markup policies.

13. At optimality, a markup policy quotes interest rates based on a thresholdb� such that

Keep o�ering r L �rst, the threshold optimally balances the type I/II errors.

There are also asymptotic optimality properties of the optimal markup policy compared to the full-
information policy, that is, the policy that knows exactly what price to quote (knows borrowers' types).

14. summary the markup policy can use to break the curse of adverse selection (asymptotically).

Lenders value: achieve almost the full-information value up to a constant market e�ciency: almost
always trade up to a constant di�erence

2.6 Session: Negotiation Models

2.6.1 E-negotiation Model to Assess O�ers and Select a Supplier in Agribusiness

1. Author: Over Manuel Causil, Danielle C. Costa Morais, Universidade Federal de Pernambuco

2. Paper ?

Abstract

The negotiation process covers the exchanging of o�ers and countero�ers between the negotia-
tors. In order to aid this process of making o�ers and countero�ers, and evaluating tradeo�s
among con
icting negotiation objects an electronic negotiation support system (e-NSS) can be
used. We propose a negotiation model using an e-NSS applied in agribusiness to select a packag-
ing supplier. Price, delivery time, and green manufacturing practices were used as negotiation
objects. The negotiation process was carried out with �ve potential suppliers where a �nal
compromise was achieved with a single provider.

3. Problem

(a) Signi�cant amount of water, energy, and material used to package food.

(b) There are Lots of negative impacts to using plastic but necessary to preserve the quality of food.

(c) Agri-food wants to �nd ways to minimize the negative impact caused by this industry.

4. Sustainable supplier selection.

5. Goal: An e-negotiation model to asses o�ers from di�erent suppliers and select the provider that �ts
the sustainable supplier selection program.

6. Solution: Negotiation

(a) Model

i. Pre-negotiation: Negotiation issues
A. Price
B. Delivery Time
C. Packages P of issues. Valuation functions as a linear combination of issues.

ii. Negotiation. Two sub-stages.
A. Pre-agreements

12



B. Comparisons of pre-agreements
iii. Post agreement

(b) FITRADEOFF (
exible and interactive tradeo�)

i. Can visualize the position of packages against other packages.
ii. Dynamic set of packages

A. Iteratively eliminate packages
B. Package P is proposed by a negotiator if proposed but rejected

2.7 Bayesian Optimization

2.7.1 Multi-step Budgeted Bayesian Optimization with Unknown Evaluation Costs

1. Author: Daniel Jiang et.al, Meta.

2. Paper

Abstract

Most Bayesian optimization algorithms ignore how evaluation costs, which are often unknown,
may change over the optimization domain. An unknown cost function with a budget constraint
introduces a new dimension to the exploration-exploitation trade-o�, where learning about the
cost incurs the cost itself. We propose a new dynamic programming-based acquisition function
for this problem setting.

3. MDP formulation of the problem

4. Find policy that maximizes value of information between starting data set and �nal dataset

5. Challenges of MDP formulation

(a) highly intractable

(b) continuous

(c) grows with the number of observed points so far

(d) high-dimensional..

6. Approach: decision trees

(a) at any t, simulate future (expand trees)

(b) have a history representation of the future

7. Optimizing via di�erentiable tree

8. based on the notion of fantasizing from the GP

(a) suppose we want to know the e�ect on our knowledge of measuring att

(b) sample \fantasy observation"

(c) add fantasy observation to GP training data

(d) each time you measure, you get a new \fantasy model"

9. The contribution here is a new acquisition function that plugs into regular BO.

(a) Additionally, some tricks using linear algebra to speed up computation with fantasy GPs.

10. Drawbacks

(a) decision trees do not scale with time horizon

(b) requires a expensive re-optimization at each step
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2.7.2 Bayesian Optimization for Heterogeneous Functions

1. Authors: Mohit Malu et al., Arizona State University

2. Paper: ?

Abstract

Bayesian Optimization with Gaussian Process prior typically assumes stationarity of the un-
derlying function over the search space, but many real-world applications require optimizing
non-stationary function. Non-stationary function can be considered as a set of stationary func-
tions over the input space divided into multiple partitions with one class of stationary function
in each partition. Often in control system setting we have access to class information along
with the function evaluation. In this work, we propose a novel optimization technique Class-
BO (Class Bayesian Optimization) for the non-stationary functions. We compare the empirical
performance of Class-BO and show that it outperforms other non-stationary methods.

3. Usual goal, maximize black-box functions

4. Usual example, hyper-parameter optimization

5. BO sequential optimization strategy

(a) statistical modeling - typically GP

(b) Why? analytical tractability

(c) intelligent sampling - using acquisition functions

(a) default

i. stationary kernel
ii. performs poorly if function is non-stationary of heterogeneous
iii. variation across input space

6. Motivation

(a) Real-world problem requires to think about non-stationarity, that is, functions that are:

i. Locally stationary
ii. global non-stationary

7. The author proposes

(a) Class-GP: to model the non-stationarity

(b) Class-ICV new acquisition function

8. Model

(a) X is a compact input space withp partitions

(b) Each partition has a class label

(c) Heterogeneous functionF : X 7! R, partition into a set of locally stationary functions

(d) Each stationary function have the same class label and same level of variability

9. Observation Model

(a) Query input point x and get back

i. Function evaluation (can be noisy)
ii. class labelz
iii. distance from closest boundary
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(b) Initial data set consists of N samples, each sample as above

10. Approach

(a) First, learning partition, then learn function in each partition.

(b) Learning Partition.
Using a tree algorithm that uses closest boundary information

(c) Learning function in each partition
new log marginal likelihood function

11. Classi�cation Tree Algorithm

(a) First, the best feature and split threshold are selected from closest boundary information

(b) Second, use conventional CART algorithm to further grow the tree

12. GP Modeling

(a) Assume GP with stationary kernel within each partition.

13. Experiments

(a) Synthetic data generated by a sinusoidal function

(b) MSE on 5000 test data points

(c) MSE averaged over 50 runs for each set of parameters

(d) the new methods perform better with more classes

2.7.3 Achieving Metric Diversity for Sample-e�cient Search of Multiobjective Optimization
Problems

1. Author: Eric Hans Lee, SigOpt

2. Paper

Abstract

Performing multi-objective optimization of important scienti�c applications such as materials
design is becoming an increasingly important research topic. This is due largely to the high
costs of said applications, and the resulting need for sample-e�cient, multimetric optimization
methods that e�ciently explore the Pareto frontier to expose a promising set of design solutions.
We propose moving away from using explicit optimization to identify the Pareto frontier and
instead suggest searching for a diverse set of outcomes that satisfy user-speci�ed performance
criteria. This presents decision makers with a robust pool of promising designs and helps
them better understand the space of good solutions. To achieve this outcome, we present the
Likelihood of Metric Satisfaction acquisition function and demonstrate its viability on various
problems.

3. Beyond the Pareto e�cient frontier: constraint active search for multi-objective experiment design

4. Review of multi-objective optimization instead on one objective function, there arem functions

(a) now we have to deal with the Pareto frontier

(b) non improving property: cannot improve one function without degrading another

5. Objective enumerate the Pareto front
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6. Motivating Questions is the mathematically optimal answer always the \best" for the user? what
does the user think \best" means anyways? even if \best" == optimal, can we reliably identify it in
practical solutions? probably no, unless there are strong assumptions

7. Constraint Active search. Overview

(a) Application Goal: through simulations, �nd glass designs with low re
ectance and high trans-
parency

(b) First try BO. Many Challenges

i. Limited physical precision
ii. points you thought were Pareto optimal in theory, are not in practice
iii. Auxiliary objectives
iv. more constraints are needed to address issues such as:heat resistance anti-fogging, etc.
v. these are not feasible to evaluate on simulations

(c) To address these... constraint active search! think of it as a search problem instead of pure
optimization

i. deals with limited physical precision by �nding designs as distinct from each other as possible.
ii. deals with auxiliary by distribution points evenly in a satisfactory region maximize chance

that at the end you have something that works!

(d) BO produces points too cluster together, so chances of having a feasible design are low The
proposed method founds more disperse points so more chances of �nding a good solution

8. Technical Details Same procedure as regular BO but for multiple objective Multiple GPs acquisition
function evaluate, update model

9. New Acquisition function expected coverage improvement likelihood of metric satisfaction (LMS)

10. LMS quanti�es how likely a parameter x will improve diversity in metric space Bottom line sample
feasible points that are faraway from other samples

11. Results Measuring success Fill distance (down is good) Number of satisfactory observations (up is
good) Number of neighbors closer than radius r (down in good) Hyper-volume of observed Pareto
Frontier (up is good)

2.8 Keynote: Modeling Systemic Risk in Supply-Demand Networks

1. David D. Yao

Abstract

Recent events (the pandemic, geo-political con
icts, climate change, etc) call for studies on
systemic risk in supply-demand networks (SDNs). An SDN is a network with nodes (or \agents")
representing resources with processing and/or storage capabilities and arcs representing their
supply-demand relations. Systemic risks in the SDN arise from its interconnectedness, such
that disruption (or \shock") at one node may quickly propagate to other nodes and possibly
lead to a system-wide disaster. There are similarities to systemic risk in the �nancial system,
but also fundamental di�erences. We will discuss how stochastic networks can play an essential
role in modeling and analyzing systemic risk in the SDN, along with certain risk-hedging tools
and other technologies such as digital twins and reinforcement learning.

2. What is systemic risk?, Why systemic risk?, Why supply and demand?

3. Recent events: pandemic, geo-political con
icts, etc., causing worldwide supply chain disruptions

4. What is NOT systemic risk?
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(a) Yossi She� and Barry C Lynn, \Systemic Supply Chain Risk", NAE/Bridge Sep 2014 Examples:
Japanese triple disaster, earthquake, tsunami, and radioactive release in 2011 Thaalind 
ood in
2011

(b) Systematic risk is not systemic risk Osadchiy, Gaur, and Seshadri: \Systematic Risk in S..."
Systematic risk is used in �anance and refer more to correlation as opposed to non-systematic
(idiosyncratic) risk: variance, with noise/forecast error

5. Examples of Systemic risk (pre-pandemic, 2014)

(a) Yossi She� and Barry C Lynn, \Systemic Supply Chain Risk", NAE/Bridge Sep 2014

(b) Capital and Credit Risks, 2008-09 �nancial crisis

(c) geographic concentration

(d) emergence of \super" suppliers (over concentration)

(e) multi-tiered Supply Chains (supply chain gets complex, with many layers)

6. Outline Part 1 Yao's research studying �nancial systemic risk. Part 2 stochastic processing network
Part 3 mitigation strategies: risk hedging we cannot completely avoid all failures, can we mitigate the
consequences?

7. Part 1

(a) �nancial institutions knit a complex network if one party defaults, this can propagate through
the network. literature: Eisnberg and Noe (2001), Cifuenter, Ferrucci, and ?

(b) in addition to the network e�ect, there is a market e�ect �nancial institutions are directly inter-
connected via the market (even if not directly connected) the institutions might owned common
assets

(c) To study a crisis like 2008 crisis, study both e�ects above.

8. Stress test Darrell Du�e's 10-by-10-by-10 proposal: 10 stressful scenarios, each applied to 10 system-
atically important �nancial intuitions along with 10..?

9. Part 2

(a) stochastic processing network to develop a stress test tool.

(b) take publicly available data from BIS or ECB

(c) develop a stochastic network

(d) try to bring the two e�ects: network e�ect and market e�ect

10. SDN supply demand network

(a) SND as Stochastic Processing Network

(b) A set of nodes: resources that provides a processing/storage/distribution function (e.g., factory,
warehouse, transportation)

(c) each node has a processing capacity: service rate

(d) some nodes that interact with the outside world will have an exogenous demand: external input
rate or arrival rate

(e) a routing transition matrix P = [ pij ] where pij rate of output from node i to j .

11. Key Idea

(a) think of the interconnected resources or interdependent critical infrastructures as processing net-
works

(b) focus on
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i. performance under normal operating conditions
ii. performance degradation under some kind of extreme event (for example, natural disaster)

estimate required time and resources for recovery

12. Mathematical formulation

(a) Dynamics: Skorohod Problem

(b) low maintenance model in terms of required data

(c) it is dynamic

13. Performance Measures:

(a) You can identify bottleneck and non-bottleneck nodes

(b) Throughout

(c) Congestion/inventory

(d) Delay/response time

(e) Recovery times (once you can measure, you can design)

14. Under normal conditions:

(a) focus on steady-state, equilibrium (design for long-term operation)

(b) but we are also interest in extreme conditions

15. Under extreme events, for example,

(a) contagion dynamics

(b) recovery times

2.9 Session: Learning and Optimization in Pricing

2.9.1 Policy Optimization Using Semi-parametric Models for Dynamic Pricing

1. Author: Mengxin Yu, Yongyi Guo, Jianqing Fan, Princeton University

2. Paper

Abstract

In this paper, we study the contextual dynamic pricing problem where the market value of a
product is linear in some observed features plus some market noise (with unknown distribution).
Products are sold one at a time, and only a binary response indicating the success or failure of
a sale is observed. We propose a dynamic statistical learning and decision-making policy that
combines semi-parametric estimation and online decision-making to minimize regret (maximize
revenue). Under mild conditions, we show that for a market noise c.d.f. F with m-th order
derivative, our policy achieves a sublinear regret. The upper bound is further reduced to sqrt
root of T if F is super smooth whose Fourier transform decays exponentially. These upper
bounds are close to the lower bound where F belongs to a parametric class.

3. Online shopping Use speci�c recommendation then revenue management. Statistical learning + Deci-
sion Making

4. Example: Uber Customer arrive according to the current conditions personal preference platform
evaluates the price according to private preference �nally, the platform received a signal: buy or no
buy

5. Idea: (contextt ; decisiont ; reward t )
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6. Main goal: maximize cumulative reward (as opposed to instant reward) Hence, can't be myopic decision
a�ects future as well take into account interaction with environment

7. Feature-based dynamic pricing context = features decision: price assume (unknown) market value
feedback: 1pt <v t

assumevt is a linear function vt = � T x t + zt , where zt is unknown market noise based on this assump-
tions: yT = 1 w.p 1 � F (pt � T

0 x t ) or 0 w.p F (pt � T
0 x t )

revt (p) = p(1 � p):::

8. So, what is the best decision we can make? and what is the benchmark?

Oracle: p�
t 2 arg max

p
revt (p) = g(� T

0 x t )

9. So, leverage past information plus current context to determine posted prices.

10. Main goal

(a) decide pt = pt (x t ; (x i ; pi ; yi ) i<t ) for t = 1 ; : : : ; T , to minimize regret

(b) Regret = expectation(oracle revenue - algorithm revenue)

(c) Need to balance learning� 0; F , with decision, adaptively optimize pt

11. Statistical Learning

Assume total time horizon is now (generalize this later)

Two phases

(a) Exploration

i. Strategy 1: a steps
i.i.d pt uniformly over range (0; B )
At the end of the exploration period, estimate � 0; F , given data (x i ; pi ; yi ) i<t

ii. good guarantees with theoretical assumptions (enough exploration time)
iii. but, we need non-asymptotic bounds in practice
iv. get regret of O(a)

(b) Exploitation: T � a Strategy 2: given � 0; F , o�er price according to demand get regretO(Ta� 1)

Total regret � a + Ta� 1

12. What if we have unknown time horizon?

Divide by episodes, each episode explore then exploit as above Double the exploit time in subsequent
episodes

13. Main Result Non-asymptotic bound on regret overT.

2.9.2 Linear Contextual Dynamic Pricing

1. Author: Jianyu Xu, University of California Santa Barbara, Santa Barbara, CA,

2. Paper
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