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Let G = (V,E) and S C V. Suppose that G is an (n,d, ¢)-expander. By definition |I'(S)| > ¢|S| for all S
with |S| < n/2, where |I'(S)| denote the set of all proper neighbors of S. In what follows, let S C V' be such
that |S| < n/2. Consider also the following definitions:

A unique neighbor of S is a vertex in I'(S) connected by an edge to only one vertex in S.

Let U C T'(S) denote the set of unique neighbors of S and T C T'(.S) the set of non-unique neighbors of S.
Let us count in two ways the number of edges between S and T'. Denote this number by EBST.

(i) EBST < d|S], since G is a d-regular graph, so in the worst case all edges in S come from to T.
(i) EBST > 2|T)|, since each member of T contributes at least 2 edges between S and T

Therefore, d|S| > EBST > 2|T|. However, the neighbors of S can be partitioned as follow: I'(S) = U UT.
Since U N'T = 0, we know that |['(S)| = |U| + |T| <= |T| = |[I'(S)| — |U|. Replacing |T| in the above
inequality we get:

d|S| = EBST > 2(IL'(5)| — |U[)

But G is an (n,d, ¢)-expander, which in particular means that [I'(S)| > ¢|S|. Thus,
d|S| = EBST = 2(|0(5)| — |U]) = 2(c|S| - |[U])

= d|S| = 2(c|S| = [U]) = d/2|5| = ¢[S] — |U|
= |U| > (c—d/2)|S]

Let A be a square symmetric matrix, A one of its eigenvalues and = an eigenvector associated with A.
Consider the following statement:
S(n): A%z = \"x

We want to show that S(n) holds for every n € N. The proof is by induction.
Base Case: S(0) is true since: A’z =Ix =2 =1 2= \'r.
Inductive Step: Suppose that S(n) is true for n > 0. To prove S(n + 1) we proceed as follow:

Atly =  A(A"z) By power rule for square matrices and associativity
A(A\"xz) By inductive hypothesis

A"(Az) By linearity of A

A"(Az)  Since z is an eigenvector with eigenvalue A

= A'flz  Power rule

Hence, the statement S(n + 1) : A"tz = A"Tlz is true, which shows the result. (]

Let G be a bipartite d-regular graph on n vertices with parts of size p and ¢ with p+ ¢ = n. Let A be
adjacency matrix of G. Then A has the following structure:

0 B
=l 4]

where B is a p x ¢ matrix. Note that since G is d-regular, each row and column of B has exactly d many
ones.

Claim: both d and —d are eigenvalues for A with eigenvectors (1,---,1) and (1,---,1,—1,--- ,—1) (p many
ones and ¢ many minus ones), respectively.
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Proof: the proof follows from the definition of eigenvalues/eigenvectors, i.e. « is an eigenvalue of A if and

only if Aa = ax for some vector z € F". Let x = (1,---,1). Then:
1
0 B i
Ax = BT o By definition of A and z
1
d
= Since B has exactly d ones in each row and column
d
1
= d|: Factoring d out
1
= dz By definition of x
Hence, (1,---,1) is an eigenvector with eigenvalue d. Likewise, let « now be (1,---,1,—1,---,—1). Then:
F 1
0 B||1 -,
Az = [BT O} 1 By definition of A and =
_7 1_
o
—d . .
= d Since B has exactly d ones in each row and column
- d -
F
1 .
= —d 1 Factoring —d out
_71_
= —dzx By definition of x
Hence, (1,---,1,—1,--- ,—1) is an eigenvector with eigenvalue —d. O

Let x € Fy be such that = # 0. Following the hint, let us fix an ¢ with 0 < ¢ < n such that z; = 1. Now,
partition Fy by defining the set X := {(y,y') € F§ x F} | y and g/ differ only in their i-th coordinate}. First
note that X covers F3, ie., |J {y}U{y'} =TF%. Since any vector belongs to only one pair it follows that
(y,y')eX

1] = [Fg1/2.

Finally, note that by the construction of X', we know that for each of its pairs: (z,y) # (x,y’) since y,y’
differ only in the é-th coordinate. Therefore, if (z,y) = 0, then (z,y’) = 1. If, on the contrary (z,y) = 1, then
(z,y') = 0. In any case, for each pair (y,y’) the vector x is orthogonal to either y or 3’ but not both. By the
previous argument about the cardinality of X, it follows that z is orthogonal to half of vectors in 5. (]



(13.9) Let n € N. Define the set F,, := {f € Falx1, -+ ,2,] : d = deg(f) < n, f £ 1}. From this set, define the
following V,; := {v € F§ : v # 0, with at most d + 1 ones}. Now, consider the following statement:

Sn):=VfeF,/veV;: f(v)=0

We want to show that S(n) holds for every n € N. The proof is by induction.

Base Case:

S(0) is vacuously true since there are no polynomials of degree less than zero.

S(1) is true since the only possible polynomials of degree less than 1 are: f(z1) =0 or f(z1) = 1. However,
we do not admit the case when f =1, so the only possibility is that f(xz1) = 0. Obviously, there exists
21 € Vp such that f(x1) = 0. Take either 1 = 0 or z; = 1. Both have at most d+1=0+1 =1 one.

Inductive Step: Suppose that S(n) is true for n > 0. To prove S(n + 1) we proceed as follow:

Let f € F4+1. We can factor f into two parts as follow:

f(x17"' 7xn+1> = fO(x17"' 7xn)xn+1 +f1(f171,"' 71.7’7,)

where fy, f1 € F,. Essentially, we have factor the polynomial f in n 4 1 variables as a sum of a polynomial
in the variable x,; whose coeflicient is a polynomial in n variables and the rest that does not depend on
Zn+1. (For example, the polynomial f(z1, 22, 23) = 12223 + 123 + 22 = (x122 + x1)x3 + 2, in this case
fo(z1,22) = 122 + 21 and fi1(z1,22) = x2. Note that since we are working in Fy, each monomial has at
most one occurrence of each variable). Now, for f it might be that f; = 0 or not, i.e., each monomial in f
might have x,41 or not. Let us handle these two cases separately:

If fi =0, then f(x1, -, 2ny1) = fo(21, -+, Tn)Try1.

In this case, by inductive hypothesis, there exists (x1,--- ,2,) € V, such that fo(x1, -+ ,2,) = 0. Add
a final coordinate to this vector with a zero or a one, i.e., (1, - ,2,,0/1) € V,11 and we have that
flxy,- - s xpy1) = fo(zr, - ,2n)xpyer = 0-0/1 = 0. So, in either case we obtain the result. Note that
in the case where we add a one, (z1,- - ,z,, 1), we have at most d + 2 ones where d = deg(fy) so we are
still in V,,41 since the degree of f is one more than the degree of fj.

If f1 # 0 then, by inductive hypothesis, there exists (z1,- - ,2,) € V,, such that fi(x1,---,z,) = 0. In this case,
augment this vector by adding a final zero coordinate: (z1,---,%,,0) € V,41 to obtain the desired
vector: f(x1,--+,2,,0) = fo(z1, -+ ,2n)0 + fi(z1, -+ ,2n) =040 = 0. We do not add ones to this
vector, so we can conclude that (z1,--,x,,0) € V,yq since (z1,- -+ ,Tp) € Vp.

In any case we have show that there exists (1, -+, Zn, Tny1) € Vg such that f(x1, -+ ,xn, Tpy1) = 0. O

(13.17) Let Ay,---, A, be a k-uniform, L-intersecting family of subsets of an n-element set. WLOG, suppose that

L={ly, -}
For A; with i =1,--- ,m let us define the polynomial f; in n variables by:

fi(z) = H (< v,z >— 1), where x € R"
k: lk<‘Ai‘

and, A; — v; = (vi1, -, Uin), where v;; = 1 if j € A;, otherwise v;; = 0.

Observe that f;(v;) = 0 for all 1 < j < i < m, since the dot product of v; with « will kill all z; such that
i does not appear in A; and leave all others such that when v; is replaced, the sum will equal [} and thus
Iy, — lx = 0. Likewise, f;(v;) # 0 for all 1 < i < m, since the number generated by the dot product will be
greater than lg. It follows from lemma 13.11 that the polynomials fi,--- , f,, are linearly independent over
R. Note that deg(f;) < s for all i = 1,--- ,m since the maximum intersection size between two sets is I.

Now, associate with each subset I of {1,---,n} of cardinallity |I| < s — 1, the following polynomial of

degree at most s:
gr(@) = (Q_wy) —k) [
j=1

iel



Observe that for any subset S C {1,--- ,n}:
gr(S) #0 < |S|#kand I C S

Remark: We can state our goal at this point. We want to show that the set {f1, -, fm} U {91, -, 91t}
is a linearly independent set and use the Linear Algebra bound in which if a set of cardinality m is linearly
independent in V' and dim(V) = n then m < n. By theorem 13.13 we know the f; polynomials lie in the

S
span of Y (7;) many multilinear monomials. Also, since the degree of each g; is at most s, these polynomials
i=0

s—1
also lie in the same span. But there are > (:‘) many g; polynomials. Therefore, if the combination of f and
i=0

g form a linearly independent set we get the whole space, from which we can conclude that m < (Z), since a
basis for this space is the combination of () monomials. (end of remark)

Now, all that remains is filling in the details for the proof that the set {f1,- -, fm} U {gr1, - ,9:} is a
linearly independent. For this, take a linear combination and assume that is equal to zero:

Z)\ifi + Z wrgr =0, for some \;, u;r € R
i=1 [I]<s—1

On the one hand, if we substitute any A; for the variables in this equation, all the g;’s will vanish since
by definition of gr(A;) # 0 <= |A;| # k and I C A;, but A; belongs to a k-uniform family and hence
|A;| = k for any j, which means that g;(A4;) = 0. On the other, if we substitute f;(A;) such that ¢ # j then
fi(A;) # 0. Therefore A; =0 for every j =1,--- ,m.

What remains is a relation among the g;. To show that this relation must be also trivial, assume the opposite
and re-write this relation as:

prngn + p1p 91, + -+ prgr, =0
with all p; # 0 and |I1] > |I;] for all j > 1. Substitue the first set I; for the variables:

pr,gr, (It) + pr,gr, (1) + -+ pr,91,(I) = 0

Since I; I, it follows that gr,(11) = 0 for all but the first function. In fact, the only function that does not
vanishes is gz, , so we are left with

prgr,(I1) =0 < g1, (I;) =0 since we assumed p; # 0

But, I; C I;. Hence, by definition of g;, it must be that |I;| = k. But I; is the biggest I so it follow that
|| =s—-1=k < s=k+ 1. But |[L| = s =k + 1, but how can you have an intersection of two k-
sets giving you a set with k + 1 elements? This is the contradiction we wanted so it follows that the relation
among the ¢’s is also trivial. This shows that the set {f1, -, fm} U{gr1, -+ ,gr:} is a linearly independent
and the result follows as explained in the above remark. (I



