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About Me & Evolving Ants (EVA) 
•!Enrique Areyan – Master Student (CS) at SoIC. You can 

contact me at eareyan@umail.iu.edu . Also, check out my 
web page for this project! 

 http://www.enriqueareyan.com/evolvingants  

•!EVA - Final Project for I585 BionInspired Computing 

course, under the supervision of Dr. Luis Rocha. 
•!EVA was built on top of AntFramework, a project I did as 

my undergraduate thesis in UCV (Universidad Central de 
Venezuela)  
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Preliminaries 
•!For the purpose of this project, EVA works in a perfect 

Maze (with some effort it can be made to work in other 
types of environments) 

•!A perfect Maze has one and only one path from any cell in 
the maze to any other cell. A cell is a node in a graph. 
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Motivation 
•!Is it true that by providing genetic information to each 

individual ant in an Ant Colony Optimization algorithm 
solutions may be found faster in environments that do not 
change often (e.g. Maze, the topology in a commercial 
network, etc)? 

•!How do we go about encoding such genetic information? 

•!How would such an strategy compare with traditional ant 
colony optimization and genetic algorithms?  

What is EVA? 
•!EVA is a novel combination of traditional ant colony 

optimization (ACO) algorithm with genetic algorithm (GA). 

•!An ant is provided with genetic information (individual 
“memory”) that it uses together with stigmergic information 
(shared “memory”) to construct solutions to a path in a 
maze. 

•!The genes of an ant indirectly  encode the series of steps 
it took to reach the source of food from its nest. 

EVA 
•!Population of ants will be evolved using a GA, whose 

fitness function will test the "effort" ants made (i.e., 
number of steps) and cost function of the path found.  

•!The best or more “fit” ants will be reproduced using 
roulette wheel selection, random crossover point, fair 
probability of crossover and low probability of mutation. 

•!In latter runs of the algorithm, an ant will use both its 
internal and share memory to make the decision about 
which nodes to visit. 

EVA – Decision Rule 

p(k)i, j = ! !G(k)+" !T(i, j )

Genetic information of ant k 
Different encodings are possible  

Stigmergic information on node 
i going to node j 

Probability of ant k to visit 
node j when visiting node i 

α and β control the influence of 
the genetic and pheromone trail on  

on the ant’s decision 

Note  that EVA generalizes ACO: 
By setting α=0, we have traditional ACO 
By setting β=0, we have traditional GA 
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The algorithm 
Initialize Parameters (ACO,GA,EvolvingAnts)!
Initialize Random Population of Ants!
While stop-condition-not-reached do!

!Node = start node !
For each Ant in Population do!

!While node-is-not-goal do!
! !Node = selectNextNode(node,ant)!

Run Genetic Algorithm with solutions found!
 !
Function selectNextNode(node n,ant a)!

!For each node reachable from n do!
! !Individual-Decision = a.develop()!
! !Collective-Decision = getPheromoneTrail(n)!
! !R = uniformRandomNumber(0,1)!
! !Choose node n’ such that R > (Individual-

Decision + Collective-Decision) / normalizer factor!
!Return n’!

Evolutionary Strategy 

Simple Encoding 
•!An ant’s gene is a string of fix length from the four-letter 

alphabet                      . A random string of a fixed length is 
generated and assigned as the ant’s genes. 

•!When making a decision, the function G is just the count 
of each letter in the string, e.g., if the ant’s gene is the 
string “UUDL”, then: 

•!  G(“U”, “UUDL”) = 0.5, G(“D”, “UUDL”) =G(“L”, “UUDL”) = 0.25, and  
G(“R”, “UUDL”) = 0 

•!This encoding is mainly used as a control case to test 
against more sophisticated strategies such as L-System.  

! = {U,D,L,R}

Simple Encoding - Example 

U = 0.5 

L = 0.25 

R = 0.25 

D = 0 

p(k)i, j = ! !G(k)+" !T(i, j )

Ant’s Gene = “UULR” 

1 

2 

3 

4 5 

p(k)1,2 =! !0.5+" !T(i, j )

p(k)1,3 =! !0.25+" !T(i, j )

p(k)1,4 =! !0.25+" !T(i, j )

p(k)1,5 =! !0+" !T(i, j )
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L-System Encoding 
•!Ant’s genes G=(Σ, σ,F), where  

•! Σ={U,D,L,R} 

•! σ�å Σ* , is the axiom, which is initialized to be a random string from 
Σ* the set of all possible strings of alphabet Σ 

•! F = {F1,F2,F3,F4}, four rules that map from each letter in Σ to Σ*. 

Each rule is initialized randomly  

•!This is your typical L-System but with four production 
rules, each one mapping from an action in the maze to a 
string. 

L-System Expression 
•!Unlike the simple gene, before the ant uses the 

information stored in its genes this must go trough a 
“developmental” phase: 

•!Iteration of the L-System a fix number of times resulting in 
string S 

•!The weights used as G(k) are now the proportion of each 
letter in the string S, similar to the simple gene. 

Why use an L-System? 
•!There is a clear genotype/phenotype mapping between 

the system’s axiom and final string, through a 
developmental phase. 

•!Encode of self-similar information which can be useful in a 
maze structure where a lot of the decision are similar 

•!Compact a lot of information effectively.  

•!The L-System stands as a suitable metaphor for an ant’s 
genetic information.  

Genetic Operations 
•!Those ants that constructed the best solution (so far) are 

selected for reproduction. How does this work? 

•!Simple encoding: the best ants’ genes are reproduced 
taking a random crossover point and allowing for mutation 

•!L-System encoding: The crossover operator takes two 
genes Gu,Gv, and a random number r uniformly distributed 
between 0 and 3, and replaces the rules (F0,Fr) of gene 
Gu  with rules (Fr,F3) of gene Gv. A single gene can also 
be mutated, meaning that a rule Fj will be changed 
randomly.  



!"#"#!$

'$

Experiments 
•!EVA was tested on mazes of different sizes, i.e., from 20 

cells to 300 cells, in increment of 10 cells. 

•! 20,30,40, …, 290 and 300. 

•!For each maze, different topologies of the mazes were 
tested. For instance, for the maze of dimension 40, three 
different topologies were created having 5, 10 and 20 
cells per row.  

•!For each of these topologies, 10 different mazes were 
tested. For convenience, node 0 is the nest and node n is 
the food source. 

Experiments 
Parameters used to test EVA 

EVA (parameters sets A through H)  

ACO (parameters I and J)  

Simple gene-EVA (A-D)  L-System-EVA (E-H)  

Results Results 
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Conclusion 
•!EVA is a viable optimization algorithm. 

•!Results of the experiments performed using EVA suggests 
that this algorithm outperforms a pure ACO algorithm 
when tested under the conditions previously described.  

•!The performance of EVA varies drastically with the choice 
of the genetic encoding of the evolutionary algorithm. 

•! An direct genotype/phenotype mapping (Simple Gene) is 
outperformed by another strategy that uses an intermediary, growth 
phase. 

Conclusion – Future Work 
•!Other evolutionary strategies can be tested: 

•! Cellular automata 

•! Boolean Networks 

•! etc 

•!Other functions mapping from the string to actions in the 
environment can be created and tested. 

•!Other kind of environments can also be tested. 

•!Thank you for your attention! 


