
Section 14.1
Vector Functions and Space Curves

“Functions whose range does not consists of numbers”
A bulk of elementary mathematics involves the study of functions -
“rules that assign to a given input a particular output”. In nearly all
mathematics, these functions have had as their inputs and outputs real
numbers (like f(x) = x2). In this section, we introduce the idea of a
vector function - a function whose outputs are vectors.

1. Vector Function Basics

We start with the formal definition of a vector function.

Definition 1.1. A vector-valued function, or a vector function, is a
function whose domain is a set of real numbers and whose range is a
set of vectors.

We have already seen lots of examples of vector functions.

Example 1.2. Let

!r(t) = (2 + 2t)!i + (2 + 2t)!j + (2 − t)!k.

Recall that this is a vector equation for a line which passes through
the point (2, 2, 2) and points in the direction of 2!i + 2!j − !k. It is also
a vector function with independent variable t.

In general, a vector function in 3-space can be written in component
form just like equations for lines i.e. any vector function is of the form
!r(t) = f(t)!i+g(t)!j+h(t)!k where f(t), g(t), and h(t) are scalar functions
of t. We call these function the component functions of the vector
function !r(t). As with regular functions, the usual definitions apply
such as domain, range etc. We can also define other notions such as
limits as continuity in of a vector function in terms of the component
functions.

Definition 1.3. If !r(t) = f(t)!i + g(t)!j + h(t)!k, then

lim
t→a

!r(t) = lim
t→a

f(t)!i + lim
t→a

g(t)!j + lim
t→a

h(t)!k

provided this limit exists.

Definition 1.4. We say !r(t) is continuous at t = a if

lim
t→a

!r(t) = !r(a).

We illustrate with a couple of examples.
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Example 1.5. Suppose that

!r(t) =
sin (t)

t
!i +

√

(2 − t)!j + ln (t + 1)!k.

Answer the following questions.

(i) What is the domain of !r(t)?

We must look at the domains of the component functions
and take what is common to them all. The domain of the
first is all real numbers but 0, the domain of the second all
numbers less than or equal to 2 and the domain of the third,
all real numbers greater than −1. Therefore, the domain will
be (−1, 0) ∪ (0, 2].

(ii) Find the limit limt→0 !r(t).

We find the limit of the component functions:

lim
t→0

(

sin (t)

t
!i +

√

(2 − t)!j + ln (t + 1)!k

)

= lim
t→0

sin (t)

t
!i + lim

t→0

√

(2 − t)!j + lim
t→0

ln (t + 1)!k =!i +
√

2!j.

(iii) Is !r(t) continuous at t = 0?

No - !r(t) is not defined at t = 0, so it could not possible be
continuous at t = 0.

2. Vector Functions and Space Curves

A space curve is a curve in space. There is a close connection between
space curves and vector functions. Specifically, we can determine a
vector function which traces along a space curve C (provided we put the
tail of the vectors at the origin, so they are position vectors). Likewise,
any vector function defines a space curve. This can be described as
follows:

• Suppose C is a curve in space. Then we can determine para-
metric equations for C (equations which tell us the coordinates
of a particle traveling along C at a given time t). Suppose
x = f(t), y = g(t) and z = h(t) are parametric equations for
C.

• Define a vector function !r(t) = f(t)!i + g(t)!j + h(t)!k which we
shall call a vector function of C. We claim that as t varies, the
position vector !r(t) traces out the curve C.

• To see this, observe that any point on C has coordinates
(f(t), g(t), h(t)), and any position vector !r(t) has head at the
point (f(t), g(t), h(t)).
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• Equivalently, if !r(t) = f(t)!i + g(t)!j + h(t)!k is a vector func-
tion, then it traces out the curve C with parametric equations
(f(t), g(t), h(t)).

We illustrate with some examples.

Example 2.1. Sketch the curve with vector equation !r(t) = t2!i + t4!j
in 2-space.

Observe that we have x = t2, and y = t4 = x2, so this curve will be the
right hand side of the parabola y = x2 (WHY?).

Example 2.2. Use your last answer to sketch the curve !r(t) = t2!i +
t4!j + t6!k in 3-space.

We know that the projection onto the xy-plane will travel along the
curve y = x2 in the first quadrant. Now note that z = t6 just means it
is always positive in the z-direction, goes to 0 at t = 0 and gets large
quickly. A graph will look like the following:

The method we used for the last example can be very helpful when
trying to draw space curves - we project down to the xy-plane (or
some other plane) and draw the 2-dimensional projection and then use
that to draw the space curve. We look at a couple more examples.

Example 2.3. Find the vector equation for the line segment between
P (1, 2, 3) and Q(2, 3, 1).
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We have already done this in an earlier section: we take

!r(t) = (1 − t)(!i + 2!j + 3!k) + t(2!i + 3!j + !k).

Example 2.4. Find a vector function which represents the curve C of
intersection of the cone z =

√

x2 + y2 and the plane z = 1 + y and
then sketch this curve.

Since both equations are for z, we can substitute and eliminate:
√

x2 + y2 =
1+y, so x2+y2 = 1+2y+y2 giving y = (x2−1)/2. This means that all
equations rely on x, so let x = t, so y = (t2 − 1)/2 and z = (t2 + 1)/2.
The curve will look like the following:

Example 2.5. Suppose two particles are traveling in space, one along
the curve !r(t) = t!i + t2!j + t3!k and the other along !s(t) = (1 + 2t)!i +
(1 + 6t)!j + (1 + 14t)!k. Do they ever collide? Do their paths intersect?

To collide, they must be at the same point at the same time i.e we must
have t = 1+2t, t2 = 1+6t and t3 = 1+14t. Solving the first equation,
we have t = −1. However, substituting into the second equation, we
get 1 = (−1)2 = 1 − 6 = −5, which is obviously not true, so these
particles cannot collide.

To see if their paths intersect, we need to check if there exists s and
t such that s = 1 + 2t, s2 = 1 + 6t and s3 = 1 + 14t i.e. they pass
through the same point, but not necessarily at the same time. This
would mean: (1+2t)2 = 1+6t and (1+2t)3 = 1+14t. Solving further,
we have 4t2 + 4t + 1 = 1 + 6t, so 4t2 − 2t = 0 or 2t(t− 1) = 0 or t = 0
or 1. Substituting into the last equation, t = 0 is a solution, but not
t = 1. When t = 0, we have s = 1, so these cross paths at (1, 1, 1).

Example 2.6. Describe the curve defined by the vector equation

!r(t) = t!i + sin (t)!j + cos (t)!k.
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We can use similar techniques to our previous observations, but in this
case, instead of projecting down onto the xy-plane, we project down
onto the yz-plane. Note that in this plane, the parametric equations
y(t) and z(t) trace out a circle. Therefore, when we include the para-
metric equation for the x-coordinate, the result will be a helix extending
out in the x direction (since x simply increases linearly as t increases).
It will look something like the following:

Example 2.7. Describe the curve defined by the vector equation

!r(t) = t!i + t sin (t)!j + t cos (t)!k.

This is similar to the previous question. The effect of multiplying by
t will do two things. First, as |t| gets larger, the projection of the
points in the yz-plane will start at (0, 0) and then gradually rotate
around the origin as |t| gets larger moving further away from the origin
as |t| grows. Second, if t > 0, the motion will be counterclockwise,
and if t < 0, the motion will be clockwise. In particular, if a particle
were to trace out this curve, it would stop at the origin and change
directions. As before, when we include the parametric equation for the
x-coordinate, the result will be a helix increasing in radius extending
out in the x direction (since x simply increases linearly as t increases).


