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1. I) Let α =

(
1 2 3 4 5 6 7 8
5 6 8 7 2 1 4 3

)
=
(
1 5 2 6

) (
3 8

) (
4 7

)
.

Then sgn(α) = (−1)8−3 = (−1)5 = −1

II) Let α =

(
1 2 3 4 5 6 7 8
3 1 2 8 7 5 4 6

)
=
(
1 3 2

) (
4 8 6 5 7

)
.

Then sgn(α) = (−1)8−2 = (−1)6 = 1

III) Let α =

(
1 2 3 4 5 6 7 8
3 4 2 5 6 7 8 1

)
=
(
1 3 2 4 5 6 7 8

)
.

Then sgn(α) = (−1)8−1 = (−1)7 = 1

IV) Let α =
(
1 2

) (
2 3

) (
3 4

) (
4 5

) (
5 6

)
∈ S10. Then sgn(α) = (−1)5 = −1

V) Let α =
(
1 2 3 4 5

) (
5 6 7 8

)
∈ S10 =

(
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 1 9 10

)
=

=
(
1 2 3 4 5 6 7 8

) (
9
) (

10
)
. Then sgn(α) = (−1)10−3 = (−1)7 = −1

VI) Let α =
(
1 5 9

) (
2 6 10

) (
4
)
∈ S10 =

(
1 5 9

) (
2 6 10

) (
4
) (

3
) (

7
) (

8
)
.

Then sgn(α) = (−1)10−6 = (−1)4 = 1

VII) Let α =
(
1 2

) (
2 3

) (
3 4

) (
4 5

) (
5 6

)
∈ S8. Then sgn(α) = (−1)5 = −1

Is the same as IV) since the number of transpositions are the same.

VIII) Let α =
(
1 2 3 4 5

) (
5 6 7 8

)
∈ S8 =

(
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1

)
=
(
1 2 3 4 5 6 7 8

)
Then sgn(α) = (−1)8−1 = (−1)7 = −1

IX) Let α =
(
1 5 9

) (
2 6 10

) (
4
)
∈ S12 =

(
1 5 9

) (
2 6 10

) (
4
) (

3
) (

7
) (

8
) (

11
) (

12
)

Then sgn(α) = (−1)12−8 = (−1)4 = 1

2. Given αn ∈ Sn, by proposition 2.35 we can write it as a product of k transpositions, i.e.:

α =
(
i1 i2

) (
i3 i4

)
· · ·
(
ir−1 ir

)
By proposition 2.27, the inverse of α is:

α−1 =
(
ir ir−1

)
· · ·
(
i4 i3

) (
i2 i1

)
Clearly, both α and α−1 have the same number of transpositions, i.e., both have k transposition. By definition 2 of
sign, sgn(α) = (−1)k = sgn(α−1)

3. 2.23 Consider the complete factorizations of σ and σ′.

σ = β1β2 · · ·βt(j) and σ′ = β1β2 · · ·βt

Where t ∈ N. Since σ ∈ Sn, σ
′ ∈ SX and |Sn| = n, |SX | = n − 1, by definition of sign we have that sgn(σ) =

(−1)n−(t+1) = (−1)n−t−1 = (−1)(n−1)−t = sgn(σ′)
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2.26 Let α =
(
i1 i2 · · · ir

)
∈ Sn be an r-cycle.

(⇒) Assume that α is an even permutation. By definition, sgn(α) = 1 = (−1)k where k is an even number, i.e,
k = 2l where l ∈ N. We also know that α can be written as the product of k transpositions:

α =
(
i1 ir

) (
i1 ir−1

)
· · ·
(
i1 i2

)
Since we fix i1 for each transposition and vary ij where 2 ≤ j ≤ r, we can conclude that there are r − 1 trans-
positions in the above decomposition. Hence, r−1 = k = 2l⇒ r = 2l+1, which means that r is an odd number.

(⇐) Let r be an odd number, i.e., r = 2l − 1 where l ∈ N. Again, we can write α as a product of trans-
positions:

α =
(
i1 ir

) (
i1 ir−1

)
· · ·
(
i1 i2

)
There are r−1 = 2l−2 transpositions. If we compute the sign of α we get: sgn(α) = (−1)2l−2 = (−1)2l(−1)−2 =
1, which by definition means that α is an even permutation.

4. 2.36 i) False. e(e(2, 3), 4) = e(8, 4) = 84 = 4096 6= e(2, e(3, 4) = e(2, 81) = 281.
ii) False Consider the group (S3, ◦). Let α =

(
1 2

)
∈ S3 and β =

(
2 3

)
∈ S3. Then αβ =(

1 2 3
)
6=
(
1 3 2

)
= βα. Hence, (S3, ◦) is a non-abelian group which shows that not all groups

are abelian.
iii) True, (R+, ·) is a group since · : R+ ×R+ is a binary associative operation. Also 1 ∈ R+ is the unity since

1 · x = x · 1 = x and each element x ∈ R+ has an inverse x−1 = 1
x ∈ R+.

iv) False, since there is no identity element. The only element that works for identity is 0 since 0+x = x+0 = x
but 0 /∈ R+

2.37 Given elements a1, a2, ..., an not necessarily distinct in a group G, we wish to prove that the inverse of a1 ·a2 · · · an
is a−1n · · · a−12 · a

−1
1 . By definition of inverse, we need to prove that (a−1n · · · a−12 · a

−1
1 ) · (a1 · a2 · · · an)

?
= e, where

e is the unit of the group G. We prove this as follow:

(a−1n · · · a−12 · a
−1
1 ) · (a1 · a2 · · · an) = a−1n · · · a−12 · (a

−1
1 · a1) · a2 · · · an Associativity

= a−1n · · · a−12 · e · a2 · · · an By definition of inverse
= a−1n · · · a−12 · (e · a2) · · · an Associativity
= a−1n · · · a−12 · a2 · · · an By definition of unit
... Applying the above steps n− 2 more times

= a−1n · an
= e By definition of inverse

⇒ (a−1n · · · a−12 · a
−1
1 ) · (a1 · a2 · · · an) = e, which means that (a−1n · · · a−12 · a

−1
1 ) is the inverse of (a1 · a2 · · · an).

By proposition 2.45 it follows that this same inverse works on the right as well.

2.38 (i) Let α =
(
1 2

) (
4 3

) (
1 3 5 4 2

) (
1 5

) (
1 3

) (
2 3

)
=

(
1 2 3 4 5
5 3 2 1 4

)
=

=
(
1 5 4

) (
2 3

)
⇒ sgn(α) = (−1)5−2 = −1, which means that α is an odd permutation. The order

of α is the lcm of the lenght of its cycle in the complete factorization, i.e., O(α) = lcm(2, 3) = 6. The
inverse is: α−1 =

(
3 2

) (
4 5 1

)
(ii) For 2.22 α =

(
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
=
(
1 9

) (
8 2

) (
3 7

) (
4 6

) (
5
)
and hence,

the order is lcm(2, 2, 2, 2, 1) = 2.

For 2.28, we have that f(0) ≡ 0 (mod 11), f(1) ≡ 1 (mod 11), f(2) ≡ 6 (mod 11), f(3) ≡ 0 (mod 9),
f(4) ≡ 5 (mod 11), f(5) ≡ 0 (mod 3), f(6) ≡ 10 (mod 11), f(7) ≡ 0 (mod 2), f(8) ≡ 8 (mod 11), f(9) ≡ 4
(mod 11), f(10) ≡ 7 (mod 11). We can write f as a permutation as follow:(

0 1 2 3 4 5 6 7 8 9 10
0 1 6 9 5 3 10 2 8 4 7

)
=
(
2 6 10 7

) (
3 9 4 5

)
Hence, the order of f is lcm(4, 4) = 4

2.39 (i) Since any permutation can be factored into disjoint r-cycles, it suffices to count them to get the total number
of permutation of a particular order. In particular, to count the number of elements of order 2 we need only
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to count every possible 2-cycle since
(
i1 i2

)2
= (1) or product of disjoint 2 cycles since disjoint cycles

have the property
[(

i1 ir
) (

i1 ir
)]2

=
(
i1 ir

)2 (
i1 ir

)2
= (1)(1) = (1), etc .

Hence, for S5: there are 5·4
2 = 10 one 2-cycles of, and 5·4·3·2

2·2 cot 2! = 120
8 = 15 two 2-cycles, so there are

10 + 15 = 25 elements of order 2 in S5.

For S6, there are 6·5
2 = 15 one 2-cycles, and 6·5·4·3

2·2·2! = 45 two 2-cycles, and 6!
2·2·2·3! = 15 three 2-cycles,

so there are 15 + 15 + 45 = 75 elements of order 2 in S6.
(ii) Given Sn, the number of elements of order 2 in Sn is:

k∑
i=1

n!

2i · i! · (n− 2i)!

where k ∈ N is such that n = 2k if n is even and n = 2k + 1 if n is odd. Note that if n = 1 then there are
no 2-cycles.
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