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1. In what follows (a),(b) and (c), to compute gcd use this fact: gcd(b, a) = gcd(b− a, a).

(a) gcd(1599, 481) = gcd(1118, 481) = gcd(637, 481) = gcd(481, 156) = gcd(325, 156) = gcd(169, 156) = gcd(156, 13) =
13. In the last step I used the fact that the gcd of a prime and a composite is the prime number. In this case
13 is prime and 156 = 2 · 78 so is a composite.

(b) gcd(3108, 1147) = gcd(1961, 1147) = gcd(1147, 814) = gcd(814, 333) = gcd(481, 333) = gcd(333, 148) = gcd(185, 148) =
gcd(148, 37) = gcd(111, 37) = gcd(74, 37) = gcd(37, 37) = 37

(c) gcd(2460, 123) = gcd(2337, 123) = gcd(2214, 123) = gcd(2091, 123) = gcd(1968, 123) = gcd(1845, 123) =
gcd(1722, 123) = gcd(1599, 123) = gcd(1476, 123) = gcd(1353, 123) = gcd(1230, 123) = gcd(1107, 123) =
gcd(984, 123) = gcd(861, 123) = gcd(738, 123) = gcd(615, 123) = gcd(492, 123) = gcd(369, 123) = gcd(246, 123) =
gcd(123, 123) = 123

2. (a) gcd(21 · 32 · 53, 22 · 32 · 52) = 21 · 32 · 52 and lcm(21 · 32 · 53, 22 · 32 · 52) = 22 · 32 · 53

(b) gcd(28 · 59 · 77, 23 · 57 · 72) = 23 · 57 · 72 and lcm(28 · 59 · 77, 23 · 57 · 72) = 28 · 59 · 77

(1.68) (i) False. Since both 219 ∈ Z and 312 ∈ Z, i.e., are integers, then the difference is also going to be an integer.
Let d = |219 − 312|. Then d ∈ Z+. Therefore, the original question: d < 1

2 , reduces to d ≤ 0, since it cannot
be a rational number. Right away we can see that d ≥ 0 since d is a positive value (absolute value). So, we
only need to check whether d = 0 or not. Suppose d = 0, then 219 = 312, but this is impossible since by the
Fundamental Theorem of Arithmetic every number has a unique prime factorization and obviously 2 and 3 are
prime, so the above factorization yields different numbers. Therefore, d > 0, which implies that d > 1

2 .

(ii) True. Suppose that r = pg11 · · · pgnn , where pi are distinct primes and gi are integers. Proof: (⇒). Suppose
r is an integer. Then by the Fundamental Theorem of Arithmetic there exists a unique factorization of r into
primes. By Corollary 1.52, let r = qe11 qe22 · · · qemm , where e1 > 0 be such a factorization. Then, up to indexing,
qe11 qe22 · · · qemm = pg11 · · · pgnn ⇒ ei = gi > 0.
(⇐) Suppose gi ∈ Z+ for all i. Then it is trivially true that r is an integer. Q.E.D.

(iii) True. Since lcm(23 · 32 · 5 · 72, 33 · 5 · 13) = lcm(23 · 32 · 5 · 72 · 130, 20 · 33 · 5 · 70 · 13) = 23 · 33 · 5 · 72 · 13 =

= 23·35·52·72·13
32·5 = 23·35·52·72·13

45

(iv) True. Let a, b ∈ Z+. Suppose that d = gcd(a, b) ≥ 2. By the Fundamental Theorem of Arithmetic, we can
write d = pe11 · p

e2
2 · · · penn , where pi is a distinct prime for all i and ei > 0 for all i, and n ≥ 1. By definition of

gcd, we have that d|a and d|b, i.e.,

pe11 · p
e2
2 · · · penn |a and pe11 · p

e2
2 · · · penn |b ⇐⇒

a = pe11 · p
e2
2 · · · penn · a′ and b = pe11 · p

e2
2 · · · penn · b′, for some a′, b′ ∈ Z

From which we can assert that at least some pi divides both a and b, since

peii |a ⇐⇒ a = peii a′′, where a′′ = pe11 · p
e2
2 · · · p

ei−1

i−1 · p
ei+1

i+1 · · · p
en
n · a′

peii |b ⇐⇒ b = peii b′′, where b′′ = pe11 · p
e2
2 · · · p

ei−1

i−1 · p
ei+1

i+1 · · · p
en
n · b′

(v) True. Suppose that a and b are relatively prime, i.e., gcd(a, b) = 1. If that is the case, then a and b share
no common factor. By the Fundamental Theorem of Arithmetic, we can write a = pe11 · p

e2
2 · · · penn and b =

qf11 · q
f2
2 · · · qfnn ; for pi and qi prime for all i and all j and ei > 0, fi > 0 for all i. Since a and b are relatively

prime, then pi 6= qi for all i. Take the squares: a2 = (pe11 · p
e2
2 · · · penn )2 = p2e11 · p2e22 · · · p2enn . Likewise,

b2 = (qf11 · q
f2
2 · · · qfnn )2 = q2f11 · q2f22 · · · q2fnn , which shows that a2 and b2 have no common factor. Hence,

gcd(a2, b2) = 1

(1.69) (i) gcd(210, 48) = gcd(2 · 3 · 5 · 7, 24 · 3 · 50 · 70) = 2 · 3 · 50 · 70 = 6

(ii) Using the fact given in class that gcd(b, a) = gcd(b− q · a, a) for some q ∈ Z. We can compute:
gcd(5678, 1234) = gcd(5678 − 4 · 1234) = gcd(1234, 742) = gcd(742, 492) = gcd(492, 250) = gcd(242, 8) =
gcd(242− 30 · 8, 8) = gcd(2, 8) = gcd(8− 4 · 2, 2) = gcd(0, 2) = 2
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(1.70) (i) Let m ≥ 2 be an integer.
(⇒) Suppose that m is a perfect square. Then m = a2 for some a ∈ Z such that a ≥ 2. By the
Fundamental Theorem of Arithmetic, we can write a = pe11 · p

e2
2 · · · penn where pi is a distinct prime for all i

and ei > 0 for all i, and n ≥ 1. It follows that:

m = a2 = (pe11 ·p
e2
2 ···penn )2 = p2e11 ·p

2e2
2 ···p2enn ⇒ each of its prime factors occurs an even number of times

(⇐) Suppose that each of m’s prime factors occurs an even number of times. Then we can write

m = p2e11 · p2e22 · · · p2enn = (pe11 · p
e2
2 · · · penn )2 = b2 , for some b ∈ Z⇒ m is a perfect square. Q.E.D.

(ii) Suppose that n is such that
√
n is a rational number. Then we can write

√
n = r ⇐⇒ n = r2 where r is

a rational number. Then, by Corollary 1.53, we can factor r = pg11 · p
g2
2 · · · pgnn where pi are distinct primes

and gi are nonzero integers. Replacing into the above equation: n = (pg11 · p
g2
2 · · · pgnn )2 = p2g11 · p2g22 · · · p2gnn ,

which by above (1.70 (i)), implies that n is a perfect square.
This proves that if

√
n is a rational number then n is a perfect square. It follows by contraposition that if

n is not a perfect square, then
√
n is not a rational number, i.e., irrational. Q.E.D.

(1.71) Proof. Let a and b be positive integers with gcd(a, b) = 1 and a·b a square. By the Fundamental Theorem of Arithmetic,
we can write a = pe11 · p

e2
2 · · · penn and b = pf11 · p

f2
2 · · · pfnn , where pi are distinct primes and ei ≥ 0 and fi ≥ 0.

Since a · b is a square this means that:

c2 = a · b = (pe11 · p
e2
2 · · · penn )(pf11 · p

f2
2 · · · pfnn ) = pe1+f1

1 · pe2+f2
2 · · · pen+fn

n

Since gcd(a, b) = 1 then a and b don’t have any common prime divisors. In particular this means that either
ei = 0 or fi = 0 for all i, but not both can be greater than zero at the same time. Let hi = ei if fi = 0 or
hi = fi if ei = 0. Then,

c2 = a · b = ph1
1 · p

h2
2 · · · ph2

n

By previous exercise, c2 (a perfect square) implies that all of its prime factors occur and even number of times.
Therefore, hi = 2 ·ki for all i. If we collect the primes coming from a and primes coming from b, we can conclude
that each of these occur an even number of times and thus, both a and b are perfect square. Q.E.D

(1.72) Proof by Contradiction. Let n = prm, where p is prime and p does not divide m. Suppose that p|
(
n
pr

)
. Since

a · b is a square, then by the previous exercise(
n
pr

)
= p · q for some q ∈ Z

n!
(n−pr)!pr! = p · q by Pascal’s formula
n! = p · q · (n− pr)!pr! multiplying both sides by (n− pr)!pr!
(prm)! = p · q · (n− pr)!pr! by hypothesis n = prm
(prm)(prm− 1)! = p · q · (n− pr)!(pr)(pr − 1)! by definition of factorial
(m)(prm− 1)! = p · q · (n− pr)!(pr − 1)! dividing by pr both sides

Let q′ = q · (n− pr)!(pr − 1)!. Then (m)(prm− 1)! = p · q′ ⇐⇒ p|(m)(prm− 1)!. Since p is prime, by Euclid’s
Lemma, either p|m or p|(prm− 1). But, we assume that p does not divide m, therefore it must be the case that
p|(prm− 1) ⇐⇒ p|(prm− 1) · (prm− 2) · · · (prm− prm+ 1) by definition of factorial.
Applying Euclid’s Lemma again, we conclude that there exists a factor of the form prm−i, where 1 ≤ i ≤ prm−1
such that p|prm− i ⇐⇒ prm− i = p · p′ for some p′ ∈ Z, which is the same as prm = p · p′+ i⇒ p - prm. But,
p|prm since by Euclid’s Lemma either p|m or p|pr. By hypothesis, p - m so p|pr ⇐⇒ pr = p · t, which is true,
for instance just let t = pr−1. Therefore, we have a contradiction since we concluded that p|prm and p - prm.
It follows that our main assumption was wrong and the case is that p -

(
n
pr

)
.

(1.75) Let M ≥ 0.

(⇒) Suppose M is the least common multiple. Suppose to the contrary that there exists a common multi-
ple of a1, a2, ..., an, call it d, such that M - d. Then by the Division algorithm we have that d = M · q + r
where 0 < r < M , it follows that r = d −M · q. By property of d, we have that ai|d for all i. This means
that d = aia

′
i. Also, ai|M , meaning that M = aibi. Replacing this into our equation for r we have that

r = d −M · q = aia
′
i − aibiq = ai(a

′
i − biq) ⇒ ai|r for all i. Hence, r is also a common multiple. However,

from the division algorithm we have that r < M but we assumed M to be the least common divisor. This is a
contradiction that shows that for any other common divisor d the lcm M is such that M |d.

(⇐) Suppose M is a common multiple of a1, a2, ..., an which divides every other common multiple d. Then
M |d ⇐⇒ d = M ·m′. Take absolute values: d = |d| = |M | · |m′| ≥ 1 · |M | ≥ M , which shows that M is the
smallest common multiple. Q.E.D.
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