The Cantor Set

The Cantor set is a famous set first constructed by Georg Cantor in 1883. It is simply a subset of the
interval [0, 1], but the set has some very interesting properties. We will first describe how to construct this
set, and then prove some interesting properties of the set.

Let I =[0,1].
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Remove the open third segment <§, §> and let
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Now remove the open third segments in each part. Let
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Continue in this way always removing the middle third of each segment to get As, A4, .. ..
Note that A; D Ay D Az D ---. And for each k € N, A}, is the union of 2¥ closed intervals, each of length
37k,
Let C =nNi2;A;. Then C is the Cantor set.
Now we will prove some interesting properties of C.

1. C' is compact.

Proof: Each Ay is a finite union of closed sets, so Ay is closed for all k by Corollary 1(b). Then
C = NAy is also closed by Corollary 1(a). Also, C' is bounded since C' C [0, 1]. So by the Heine-Borel
Theorem, C' is compact.
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2. Let = 0.ajazas ... be the base 3 expansion of a number z € [0,1]. Then z € C iff a,, € {0,2} for all
n € N.

Proof: For a review of converting numbers to a different base, see
http://www.mathpath.org/concepts/Num/frac.htm. The fast explanation of base 3 is that the decimal
records which ”third” the number is in. For example 0.120 is in the second third in A;, and then a
third third in As, and then a first third of As.

Let x € [0,1] and let 0.ajasas . .. be its base 3 expansion. Assume there is some k € N such that a; =1
in the expansion. Then 0.a1a2...ax-1 € Ay—1 but ay =1 = ¢ Ay =z ¢ C.

On the other hand, by the definition of base 3 expansion, if a,, € {0,2}, for all n € N, then x € C.

3. C is uncountable.

Proof: This is the same diagonalizing proof that we did for showing R is uncountable. Suppose C is
countable, and list it’s elements as C' = {x1,x2,x3,...}. Now look at the base 3 expansion of each of
those numbers. We can write

ry = O.a11a12a13 SN
o = 0.a21a22a23 e
T = O.leakzakg RN

Where a;; = 0 or 2 for all 4, 7.



Let y = 0.b1babs . .. where

b, — 0 if Qi = 2

v 2 if Qi = 0
Then y # x1 since by # a1, y # X2 since by # age, and so on. This implies that y ¢ C, but this
is a contradiction since b; € {0,2} for each i, and by the previous problem, y € C. Therefore C is
uncountable.

O

. C contains no intervals.

Proof:  Let (a,b) C [0,1], and assume a < b. Let M = {n € N : —logs(b — a) < n}. Notice
that (a,b) C [0,1], so b — a < 1 which implies that —logs(b —a) > 0, and —logz(b — a) € R, so
by the Archimedean property, there is some m € M such that m < k for all kK € M. So we have
—logs (b — a) < m which implies that 3=(~1°83(b=4)) > 3=m_ The left hand side of that inequality can
be simplified as follows: 37~ (~1ogs(b=a)) — 3logs(b=a) —p _ ¢ = |b — a| < 3=™. But A,, is the union of
subsets of [0, 1] of length 3™ which implies that (b,a) € A,,. Therefore (b,a)  C.

O
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1 e C, but 1 is not an endpoint of any of the intervals in any of the sets Ay, for k € N.

Proof: The base 3 decimal expansion of % is 0.02. Thus by part (b), % € C. Notice that z € Ay, is an
endpoint if = 0,2 = 1, or if x = 37% for some k € N. Clearly % # 0,1, and for all k£ € N, % £ 37k,

Therefore % is not an endpoint.
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