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MATH3/4/62051 0. Preliminaries

0. Preliminaries

x0.1 Contact details

The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275805,
Email: charles.walkden@manchester.ac.uk.

My o ce hour is: Monday 1:30pm{2:30pm. If you want to see me at another time then
please email me rst to arrange a mutually convenient time.

x0.2 Course structure

x0.2.1 MATH32051

MATH32051 is a 10 credit course. There will be about 22 lectues and a weekly examples
class. The examples classes will start in Week 2.

For the 10-credit course, we will cover the material in Chapers 1{22 (although we will
only sketch the details that are in Chapter 22), and Chapter 2.

For Chapters 1{22, the material in each chapter correspond4o one lecture.

x0.2.2 MATH42051, MATH62051

MATH42051/62051 are 15 credit courses. The course will const of the taught lectures,
together with independent reading material on limit sets. There will be fortnightly support
classes for the reading material, starting in week 3 (see thémetable for details).

For the 15-credit course, we will cover the material in Chapers 1{22 (sketching the
details that are in Chapter 22) and 28 in the lectures, and diguss the material in Chapters
23{27 in the fortnightly support classes.

X0.2.3 Lecture notes

This le contains a complete set of lecture notes. The lectue notes contain more material
than | present in the lectures. This allows me to expand on mimr points for the interested
student, present alternative explanations, etc. Only the material | cover in the lectures is
examinable.

x0.2.4 EXxercises

The lectures also contain the exercises. For your conveniee I've collated all the exercises
into a single section at the end of the notes; here, I've indiated which exercises are partic-
ularly important and which are there for completeness only. The exercises are a key part
of the course.

x0.2.5 Solutions to the exercises

This le contains the solutions to all of the exercises. | wil trust you to have a serious
attempt at the exercises before you refer to the solutions.
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x0.2.6  Support classes

The support classes are a key part of the course. | will try to nake them as interactive as
possible by getting you to revise material that will be usefd in the course or getting you
to work through some of the exercises, perhaps with additioal hints. Towards the end of
the course we will spend time doing past exam papers. You shddiconsider attendance at
the examples classes to be compulsory.

The handouts in the support classes comprise of questionsdm the exercises and past
exams. These handouts do not contain any material that is notalready available within
these notes or within the past exam papers on the course webpga; as such | will not be
putting these handouts on the course webpage.

x0.2.7 Lecture capture

The lectures will be recorded using the University's lectue capture system. However,
Lecture Capture only records the audio and the output of the data projector. The over-
whelming majority of the lectures will be given on the blackboard. Hence relying on lecture
capture will not be an adequate substitute for attending the lectures.

x0.3 Coursework and the exam

The coursework for this course takes the form of an “informatuiz', based around previous
exam paper questions and distributed in Week 5 for you to attenpt during Reading Week.

This is a formative assessment task that will give you an easl indication of how well you

understand the material. If you hand in your solutions to me during Week 7 then | will

mark it and give you written feedback on your work. Note, however, it will not count

towards your nal mark for the course.

The course is examined by a 2 hour (for MATH32051) or 3 hour (fo MATH42051,
MATH62051) written examination in January. The exam is in th e same format as previous
years: Section A contains four questions worth a total of 40 rarks, Section B contains three
questions, each worth 30 marks, of which you must do two. For M\TH42051/62051, there
is also an additional Section C with three questions worth a btal of 50 marks.

x0.4 Recommended texts

J. Anderson, Hyperbolic Geometry, 1st ed., Springer Undergraduate Mathematics Series,
Springer-Verlag, Berlin, New York, 1999.

S. Katok, Fuchsian Groups Chicago Lecture Notes in Mathematics, Chicago University
Press, 1992.

A. Beardon, The Geometry of Discrete Groups Springer-Verlag, Berlin, New York, 1983.

The book by Anderson is the most suitable for the rst half of the course. Katok's book
is probably the best source for the second half of the coursend for those of you doing
15-credit version. Beardon's book contains everything in he course, and much more. You
probably do not need to buy any book and can rely solely on thedcture notes.
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1. Where we are going

x1.1 Introduction

One purpose of this course is to provide an introduction to sme aspects of hyperbolic ge-
ometry. Hyperbolic geometry is one of the richest areas of nthematics, with connections
not only to geometry but to dynamical systems, chaos theory,number theory, relativity,
and many other areas of mathematics and physics. Unfortunagly, it would be impossible
to discuss all of these aspects of hyperbolic geometry withithe con nes of a single lecture
course. Instead, we will develop hyperbolic geometry in a wathat emphasises the similar-
ities and (more interestingly!) the many di erences with Eu clidean geometry (that is, the
‘real-world' geometry that we are all familiar with).

x1.2 Euclidean geometry

Euclidean geometry is the study of geometry in the Euclideanplane R?, or more generally
in n-dimensional Euclidean spaceR". This is the geometry that we are familiar with from
the real world. For example, in a right-angled triangle the square of the hypotenuse is equal
to the sum of the squares of the other two sides; this is Pythagras' Theorem.

But what makes Euclidean geometry "Euclidean'? And what is geometry' anyway?
One convenient meta-de nition is due to Felix Klein (1849-1929) in his Erlangen programme
(1872), which we paraphrase here: given a set with some striure and a group of trans-
formations that preserve that structure, geometry is the study of objects that are invariant
under these transformations. For 2-dimensional Euclideargeometry, the set is the planeR?
equipped with the Euclidean distance function (the normal way of de ning the distance be-
tween two points) together with a group of transformations (such as rotations, translations)
that preserve the distance between points.

We will de ne hyperbolic geometry in a similar way: we take a =t, de ne a notion of
distance on it, and study the transformations which presene this distance.

x1.3 Distance in the Euclidean plane

Consider the Euclidean planeR?. Take two points x;y 2 R?. What do we mean by the
distance betweenx and y? If x = (X1;X2) and y = (y1;y2) then one way of calculating the
distance betweenx and y is by using Pythagoras' Theorem:

p
distance(x;y) = kx yk= " (y1 X1)2+(y2 X2)?; (1.3.1)

this is the length of the straight line drawn in Figure 1.3.1. Writing d(x;y) for distance(x;y)
we can see that there are some natural properties satis ed byhis formula for distance:

(i) d(x;y) O for all x;y with equality if and only if x =y,
(i) d(x;y) = d(y;x) for all x;y,
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Y2

X2

X2

X1 Y1

Figure 1.3.1 : The (Euclidean) distance from x to y is the length of the “straight' line
joining them

(i) d(x;z) d(x;y)+ d(y;2z) for all x;y;z.

Thus, condition (i) says that the distance between any pair d distinct points is positive,
condition (ii) says that the distance from x to y is the same as the distance frony to x,
and condition (iii) says that that distance between two points is increased if we go via a
third point. This is often called the triangle inequality and is illustrated in Figure 1.3.2.

y

Figure 1.3.2 : The triangle inequality: d(x;z) d(x;y)+ d(y;2)

In mathematics, it is often fruitful to pick out useful prope rties of known objects and
abstract them. If we have a setX and a functiond: X X ! R that behaves in the way
that we expect distance to behave (that is,d satis es conditions (i), (ii) and (iii) above),
then we call X a metric spaceand we calld a distance function or a metric.

Because of our familiarity with Euclidean geometry, there ae often issues surrounding
our de nitions that we do not realise need to be proved. For example, we de ne the
distance betweenx;y 2 R? by (1.3.1) and recognise that the straight line drawn fromx to
y in Figure 1.3.1 represents the shortest “path’ fronx to y: any other path drawn from x to
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y would have a longer length. However, this needs proof. Notelso that we have said that
this straight line is “the' shortest path; there are two statements here, rstly that there is
a path of shortest length betweenx and y, and secondly that there is only one such path.
These statements again need to be proved.

Consider the surface of the Earth, thought of as the surface foa sphere. See Figure 1.3.3.
The paths of shortest length are arcs of great circles. Betwen most pairs of points, there
is a unique path of shortest length; in Figure 1.3.3 there is ainique path of shortest length
from A to B. However, between pairs of antipodal points (such as the ‘nth pole' N and
“south pole'S) there are in nitely many paths of shortest length. Moreover, none of these
paths of shortest length are “straight' lines inR3. This indicates that we need a more careful
approach to de ning distance and paths of shortest length.

N\,

Figure 1.3.3 : There is just one path of shortest length fromA to B, but in nitely many
from N to S

The way that we shall regard distance as being de ned is as ftdws. Becausea priori
we do not know what form the paths of shortest length will take, we need to work with all
paths and be able to calculate their length. We do this by meas of path integrals. Having
done this, we now wish to de ne the distanced(x;y) between two points x;y. We do this
de ning d(x;y) to be the minimum of the lengths of all paths from x to y.

In hyperbolic geometry, we begin by de ning the hyperbolic length of a path. The
hyperbolic distance between two points is then de ned to be he minimum of the hyperbolic
lengths of all paths between those two points. We then prove hat this is indeed a metric,
and go on to prove that given any pair of points there is a uniqwe path of shortest length
between them. We shall see that in hyperbolic geometry, thes paths of shortest length
are very di erent to the straight lines that form the paths of shortest length in Euclidean
geometry. In order to avoid saying “straight line' we insteal call a path of shortest length
a geodesic

x1.4 Groups and isometries of the Euclidean plane

x1.4.1 Groups

Recall that a group G is a set of elements together with a group structure: that is,there
is a group operation such that any two elements ofG can be ‘combined' to give another
element of G (subject to the "group axioms'"). If g; h 2 G then we denote their ‘combination’
(or “product’, if you prefer) by gh. The group axioms are:
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(i) associativity: if g;h;k 2 G then (gh)k = g(hk);

(i) existence of an identity: there exists an identity element e 2 G such that ge= eg= g
forall g2 G;

(iii) existence of inverses: for eachy 2 G there existsg ' 2 G suchthatgg *=g 'g=e.
A subgroupH G is a subset ofG that is in itself a group.

x1.4.2 Isometries

An isometry is a map that preserves distances. There are somgbvious maps that preserve
distances inR? using the Euclidean distance function. For example:

() the identity map e(x;y) = ( x;y) (trivially, this preserves distances);

(i) atranslation (a,.4,)(X;y) =(X+ ai;y + ap) is an isometry;

(iii) a rotation of the plane is an isometry;

(iv) a re ection (for example, re ection in the y-axis, (x;y) 7! ( X;y)) is an isometry.

One can show that the set of all isometries oR? form a group, and we denote this group
by Isom(R?). We shall only be interested in orientation-preserving isometries (we will not
de ne orientation-preserving here, but convince yourselfthat the rst three examples above
preserve orientation, but a re ection does not). We denote he set of orientation preserving
isometries of R? by Isom* (R?). Note that Isom* (R?) is a subgroup of IsomR?).

Exercise 1.1
Let R denote the 2 2 matrix that rotates R? clockwise about the origin through angle
2 [0;2 ). Thus R has matrix

cos sin
sin  cos

Let a=(ap;ap) 2 R?. De ne the transformation

Ta:R?! R?
by
T. X _ co_s sin X . & ;
' y sin  cos y a

thus T .5 rstrotates the point ( x;y) about the origin through an angle and then translates
by the vector a.
LetG=fT,j 2[0;2);a2R?%.
() Let ; 2[0;2 )and let a;b2 R2. Find an expression for the compositionT .4 T .
Hence show thatG is a group under composition of maps (i.e. show that this prodict is
(a) well-de ned (i.e. the composition of two elements ofG gives another element ofG),
(b) associative (hint: you already know that composition of functions is associative),
(c) that there is an identity element, and (d) that inverses exist).

(i) Show that the set of all rotations about the origin is a subgroup of G.

(i) Show that the set of all translations is a subgroup of G.

One can show thatG is actually the group Isom" (R?) of orientation preserving isometries
of R? with the Euclidean matrices.
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x1.5 Tiling the Euclidean plane

A regular n-gon is a polygon with n sides, each side being a geodesic and all sides having
the same length, and with all internal angles equal. Thus, a egular 3-gon is an equilateral
triangle, a regular 4-gon is a square, and so on. For what valkes of n can we tile the
Euclidean plane by regularn-gons? (By atiling, or tessellation, we mean that the plane
can be completely covered by regulan-gons of the same size, with no overlapping and no
gaps, and with vertices only meeting at vertices.) It is easyto convince oneself that this is
only possible forn = 3;4;6. Thus in Euclidean geometry, there are only three tilings dé the

Figure 1.5.4 : Tiling the Euclidean plane by regular 3-, 4- and 6-gons

plane by regularn-gons. Hyperbolic geometry is, as we shall see, far more im&sting|there
are in nitely many such tilings! This is one reason why hyperbolic geometry is studied:
the hyperbolic world is richer in structure than the Euclidean world!

Notice that we can associate a group of isometries to a tiling namely the group of
isometries that preserves the tiling. Thus, given a geomeic object (a tiling) we can asso-
ciate to it an algebraic object (a subgroup of isometries). @nversely, as we shall see later,
we can go in the opposite direction: given an algebraic objé¢a subgroup of isometries sat-
isfying some technical hypotheses) we can construct a geotnie object (a tiling). Thus we
establish a link between two of the main areas of pure mathemigcs: algebra and geometry.

x1.6 Where we are going

There are several di erent, but equivalent, ways of constricting hyperbolic geometry. These
di erent constructions are called "'models' of hyperbolic gometry. The model that we shall
primarily study is the upper half-plane modelH. We shall explain how one calculates
lengths and distances inH and we shall describe all isometries oH.

Later we will study another model of hyperbolic geometry, nanely the Poincae disc
model. This has some advantages over the upper half-plane rdel, for example pictures
are a lot easier to draw!

We then study trigonometry in hyperbolic geometry. We shall study analogues of famil-
iar results from Euclidean geometry. For example, we shall drive the hyperbolic version
of Pythagoras' Theorem which gives a relationship between he lengths of the sides of a
right-angled hyperbolic triangle. We shall also discuss tle Gauss-Bonnet Theorem. This is
a very beautiful result that can be used to study tessellatims of the hyperbolic plane; in
particular, we shall prove that there are in nitely many tilings of the hyperbolic plane by
regular hyperbolic n-gons.

We will then return to studying and classifying isometries of the hyperbolic plane. We
shall see that isometries can be classi ed into three distint types (elliptic, parabolic and
hyperbolic) and we shall explain the di erences between then.
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As we shall see, the collection of all (orientation presenng) isometries of the hyperbolic
plane form a group. We will describe the orientation presering isometries in terms of
Mebius transformation, and denote the group of such by Meb(H). Certain subgroups of
Meb( H) called Fuchsian groups have very interesting properties. We shall explain how
one can start with a Fuchsian group and from it construct a tesellation of the hyerbolic
plane. Conversely, (with mild and natural conditions) one can start with a tessellation
and construct a Fuchsian group. This gives an attractive comection between algebraic
structures (Fuchsian groups) and geometric structures (tasellations). To establish this
connection we have to use some analysis, so this course demstnates how one may tie
together the three main subjects in pure mathematics into a oherent whole.

x1.7 Appendix: a historical interlude

There are many ways of constructing Euclidean geometry. Kla's Erlangen programme can
be used to de ne it in terms of the Euclidean plane, equipped vth the Euclidean distance
function and the set of isometries that preserve the Euclidan distance. An alternative way
of de ning Euclidean geometry is to use the de nition due to the Greek mathematician
Euclid (c.325BC{c.265BC). In the rst of his thirteen volum e set "The Elements', Euclid
systematically developed Euclidean geometry by introduang de nitions of geometric terms
(such as ‘line’ and “point’), ve ‘common notions' concernng magnitudes, and the following
ve postulates:

(i) a straight line may be drawn from any point to any other poi nt;

(i) a nite straight line may be extended continuously in a straight line;
(iii) a circle may be drawn with any centre and any radius;
(iv) all right-angles are equal;

(v) if a straight line falling on two straight lines makes the interior angles on the same
side less than two right-angles, then the two straight lines if extended inde nitely,
meet on the side on which the angles are less than two right-agies.

Figure 1.7.5 : Euclid's fth postulate: here + < 180

The rst four postulates are easy to understand; the fth is m ore complicated. It is equiv-
alent to the following, which is now known as the parallel postulate:

Given any in nite straight line and a point not on that line, t here exists a unique
in nite straight line through that point and parallel to the given line.

10
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Euclid's Elements has been a standard text on geometry for oo two thousand years
and throughout its history the parallel postulate has been ®ntentious. The main criticism
was that, unlike the other four postulates, it is not su cien tly self-evident to be accepted
without proof. Can the parallel postulate be deduced from the previous four postulates?
Another surprising feature is that most of plane geometry can be developed without using
the parallel postulate (it is not used until Proposition 29 in Book 1); this suggested that
the parallel postulate is not necessary.

For over two thousand years, many people attempted to prove hat the parallel postulate
could be deduced from the previous four. However, in the rsthalf of the 19th century,
Gauss (1777{1855) proved that this was impossible: the pai&l postulate was independent
of the other four postulates. He did this by making the remarkable discovery that there
exist consistent geometries for which the rst four postulates hold, but the parallel postulate
fails. In 1824, Gauss wrote "The assumption that the sum of tk three sides (of a triangle) is
smaller than 180 degrees leads to a geometry which is quite @rent from our (Euclidean)
geometry, but which is in itself completely consistent." (One can show that the parallel
postulate holds if and only if the angle sum of a triangle is alvays equal to 180 degrees.)
This was the rst example of a non-Euclidean geometry.

Gauss never published his results on non-Euclidean geometr However, it was soon
rediscovered independently by Lobachevsky in 1829 and by Bgai in 1832. Today, the
non-Euclidean geometry of Gauss, Lobachevsky and Bolyai isalled hyperbolic geometry
and any geometry which is not Euclidean is callednon-Euclidean geometry

11
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2. Length and distance in hyperbolic geometry

x2.1 The upper half-plane

There are several di erent ways of constructing hyperbolicgeometry. These di erent con-
structions are called ‘'models'. In this lecture we will diseiss one particularly simple and
convenient model of hyperbolic geometry, namely theupper half-plane model

Remark. Throughout this course we will often identify R? with C, by noting that the
point (x;y) 2 R? can equally well be thought of as the pointz = x + iy 2 C.

De nition. The upper half-plane H is the set of complex numbersz with positive imag-
inary part: H=fz2 CjIm(z) > Og.

De nition. The circle at in nity or boundary of H is de ned to be the set@ = fz 2
Cjim(z)=0g[flg . Thatis, @H is the real axis together with the point 1 .

Remark. What does1l mean? It's just a point that we have ‘invented' so that it makes
sense to write things like Ex!1 asx! 0 and have the limit as a bona de point in the
space.

(If this bothers you, rememberpth_at you are already used to ‘mventing' numbers; for
example irrational numbers such as 2 have to be “invented' because rational numbers need
not have rational square roots.)

Remark. We will use the conventions that, if a 2 R and a 6 0 then a=1 = 0 and
a0=1,andifb2 Rthenb+1 =1 . Weleave -1 ;1 =0;1 =1 ;0=0;1 1 unde ned.

Remark. We call @ the circle at in nity because (at least topologically) it is a circle! W e
can see this using a process known agereographic projection Let K = fz2 Cjjzj=1g
denote the unit circle in the complex planeC. De ne a map

K RJ[flg

as follows. Forz 2 K nfig let L, be the (Euclidean) straight line passing throughi and
z; this line meets the real axis at a unique point, which we dente by (z). We de ne

(i)= 1. The map is a homeomorphism fromK to R[flg ; this is a topological way
of saying theK and R[flg are ‘the same'. See Figure 2.1.1.

Remark. We call @ the circle at in nity because (as we shall see below) points o@+
are at an in nite “distance' from any point in H.

Before we can de ne distances irH we need to recall how to calculate path integrals in
C (equivalently, in R?).

12
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Figure 2.1.1 : Stereographic projection. Notice how asz approachesi, the image (z) gets
large; this motivates dening (i)= 1 .

x2.2 Path integrals

By a path in the complex plane C, we mean the image of a (di erentiable) function
():[a;g! C, where Ja;b R is aninterval. Thus a path is, heuristically, the result
of taking a pen and drawing a curve in the plane. We call the paits (a); (b) the end-
points of the path . We say that a function :[a;h! C whose image is a given path is a
parametrisation of that path. Notice that a path will have lots of di erent par ametrisations.

Example. Dene 1:[0;1]! Chy (t)=t+it anddene ,:[0;1]! Cbhy ,(t)=
t2+ it2. Then 1 and » are dierent parametrisations of the same path in C, namely the
straight (Euclidean) line from the origin to 1 + i.

Let f : C! R be a continuous function. Then the integral of f along a path s
de ned to be: Z Z,
f= £ Widt; (2:2.1)

a
herej j denotes the usual modulus of a complex number, in this case,

i Wiz Re qO)Z+(m )%

Remark.  To calculate the integral of f along the path e have to choose a parametri-
sation of that path. So it appears that our de nition of f depends on the choice of
parametrisation. One can show, however, that this is not thecase: any two parametrisa-

tions of a given path will always give the same answer. For ths reason, we shall sometimes
identify a path with its parametrisation.

Exercise 2.1
Consider the two parametrisations

1:00;2] H @ t7h i+
S [L2]Y H ot (12 )+
Verify that these two parametrisatigns de ne the same path
Let f (z) = 1=Im(z). Calculate f using both of these parametrisations.

r (The point of this exercise is to show that we can often simpffy calculating the integral
f of a function f along a path by choosing a good parametrisation.)

13
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So far we have only de ned how to integrate along di erentiable paths, that is we have
assumed that (t) is a di erentiable function of t. It will be useful in what follows to allow
a slightly larger class of paths.

De nition. A path  with parametrisation () :[a;b! C is piecewise dierentiable if
is continuous and is di erentiable except at nitely many po ints.

(Roughly speaking this means that we allow the possibility hat the curves has nitely many
‘corners'.) For example, the path (t) =(t;jtj), 1 t 1 is piecewise dierentiable: itis
di erentiable gyerywhere except at the origin, where it hasa "corner'.

To dene f for a piecewise di erentiable path we merely write as a nite union
of di erentiable sub-paths, calculating the integrals along each of these subpaths, and then
summing the resulting integrals.

x2.3 Distance in hyperbolic geometry

We are now is a position to de ne the hyperbolic metric in the upper half-plane model of hy-
perbolic space. To do this, we rst de ne the length of an arbitrary piecewise di erentiable
path in H.

De nition. Let :[a;bl! H beapathinthe upper half-planeH = fz2 CjIm(z) > Og.
Then the hyperbolic length of is obtained by integrating the function f (z) = 1=Im(2)
along , i.e.
' Z Z, . .
lengthy,( ) = L TP
Im(z) 4 Im( (1))

Examples.

1. Consider the path (t)= a;+t(az a;)+ib,0 t 1 betweena;+ ib anda;+ ib.
Then Yt)= a, a;andIm( (t)) = b. Hence

Z,

length,( ) = 122 & 4 132 al.

b b

2. Consider the points 2+ i and 2 +i. By the example above, the length of the
horizontal path between them is 4.

3. Now consider a di erent path from 2+ i to 2+ i. Consider the piecewise linear path
that goes diagonally up from 2+ i to 2i and then diagonally down from 4 to 2 + i.
A parametrisation of this path is given by

t = 2t 2)+i(@a+t); 0 t 1,
1) = (2t 2)+i(3 t); 1 t 2

Hence p_
g j2+ij= .5 0 t 1L
PWi= o PE g 2

and

1+t 0 t 1
mCW= 31t 2

14
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Hence

Z — —
1IO5 ZZIO5
dt + ——dt
o 1+t 1 3t

lengthy( )

_ 1 _ 2
IC)5Iog(1+t)0 p5Iog(3 t)1

ZpEIogz

which is approximately 3.1.

Note that the path from 2+ to 2+ i in the third example has ashorter hyperbolic length
than the path from 2+ i to 2+ i in the second example. This suggests that the geodesic
(the paths of shortest length) in hyperbolic geometry are vey di erent to the geodesics we
are used to in Euclidean geometry.

-2+i 2+i -2+ 2+i

Figure 2.3.2 : The rst path has hyperbolic length 4, the second path has hyperbolic
length 3.1

Exercise 2.2
Consider the pointsi and ai where O<a < 1.

(i) Consider the path  betweeni and ai that consists of the arc of imaginary axis
between them. Find a parametrisation of this path.

(i) Show that
lengthy( ) =log 1=a:

(Notice that as a! 0, we have that log¥a!1 . This motivates why we call R [ flg
the circle at in nity .)

x2.4 Hyperbolic distance

We are now in a position to de ne the hyperbolic distance between two points in H.

De nition. Let z;z°2 H. We de ne the hyperbolic distancedy(z;z% between z and z°
to be

du(z;2% = inf flengthy( )j is a piecewise di erentiable path
with end-points z and z%:

Remark. Thus we consider all piecewise di erentiable paths betweerz and z° calculate
the hyperbolic length of each such path, and then take the shadest. Later we will see that
this in mum is achieved by a path (a geodesic), and that this path is unique.
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Exercise 2.3
Show that dy satis es the triangle inequality :

du(x;z)  du(X;y) + du(y;2); 8 x;y;z 2 H:

That is, the distance between two points is increased if one @es via a third point.

16
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3. Circles and lines, Mdbius transformations

x3.1 Circles and lines

We are interested in the following problem: given two pointsw;z in H, what is the path of
shortest length between them? (A path achieving the shorteslength is called a geodesic

The purpose of this lecture is to give a useful method for simltaneously treating circles
and lines in the complex plane. This will provide a useful deice for calculating and working
with the geodesics inH.

Recall that we can identify R? with C by identifying the point ( x;y) 2 R? with the
complex numberx + iy 2 C. We are familiar with the equations for a straight line and for
a circle in R?; how can we express these equations i6?

x3.2 Lines
First consider a straight (Euclidean) line L in R?. Then the equation of L has the form:
ax+ by+c=0 (3.2.1)

for some choice ofa; b;c2 R. Write z = x + iy. Recalling that the complex conjugate ofz
is given byz = x iy itis easy to see that

1 1
X = E(z+ 2);y = E(Z 2):
Substituting these expressions into (3.2.1) we have
a %(z+ z) +b z_li(z z) +c¢c=0;
and simplifying gives
%(a ib)z + %(a+ ib)z+ ¢c=0:
Let =(a ib)=2. Then the equation ofL is

z+ z+c=0: (3.2.2)

x3.3 Circles

Now let C be a circle in R? with centre (xo;Yo) and radius r. Then C has the equation
(x X0)?+(y yo)>=r2 Letz=x+iy andzy = Xo+ iyo. Then C has the equation
jz 0% = r2. Recalling that jwj? = ww for a complex numberw 2 C, we can write this
equation as

(z 20)(Z zo)=r?

17
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and expanding out gives
727 20z Zoz+ Z20Zp r?=0:

Let = zpand = zgzp r2=jzj? r? Then C has the equation
zz+ z + z+ =0: (3.3.1)

Remark. Observe that if we multiply an equation of the form (3.2.2) or (3.3.1) by a
non-zero constant then the resulting equation determinestie same line or circle.

We can combine (3.2.2) and (3.3.1) as follows:

Proposition 3.3.1
Let A be either a circle or a straight line in C. Then A has the equation

zz+ z+ z+ =0; (3.3.2)
where; 2 Rand 2C.

Remark. Thus equations of the form (3.3.2) with = 0 correspond to straight lines, and
equations of the form (3.3.2) with 6 0 correspond to circles. In the latter case, we can
always divide equation (3.3.2) by to obtain an equation of the form (3.3.1).

Exercise 3.1
Let L be a straight line in C with equation (3.3.2). Calculate its gradient and intersedions
with the real and imaginary axes in terms of ; ;

Exercise 3.2
Let C be a circle in C with equation (3.3.2). Calculate the centre and radius ofC in terms
of ;;

x3.4 Geodesics in H

A particularly important class of circles and lines in C are those for which all the coe cients
in (3.3.2) are real. By examining the above analysis, we havéhe following result.

Proposition 3.4.1

Let A be a circle or a straight line in C with satisfying the equation z z+ z + z+ =0.
Suppose 2 R. Then A is either (i) a circle with centre on the real axis, or (ii) a vertical
straight line.

We will see below that the geodesics (the paths of shortest Iperbolic length) in the
upper half-plane model of hyperbolic space are precisely thintersections of the circles and
lines appearing in Proposition 3.4.1 with the upper half-pane. Note that a circle in C
with a real centre meets the real axis orthogonally (meaning at right-angles); hence the
intersection of such a circle with the upper half-planeH is a semi-circle. Instead of saying
“circles in C with real centres' we shall often say “circles inC that meet R orthogonally'.

De nition. Let H denote the set of semi-circles orthogonal tdR and vertical lines in the
upper half-plane H.

18
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Figure 3.4.1 : Circles and lines with real coe cients in (3.3.2)

x3.5 Msbius transformations

De nition. Let a;b;c;d2 R be such thatad bc > 0 and de ne the map

az+ b
cz+d

(2) =

Transformations of H of this form are called Mebius transformations of H.

Exercise 3.3
Let be a Mebius transformation of H. Show that mapsH to itself bijectively and give
an explicit expression for the inverse map.

Recall that a group is a setG together withamap G G! G (denoted by juxtaposition)
such that the following axioms hold:

(i) associativity: g1(g203) = ( 0102)9s,

(ii) existence of an identity element: there existse 2 G such that eg = ge = g for all
g2 G,

(iii) existence of inverses: for allg 2 G there existsg 12 G such thatgg '=g 'g= e

One of the main aims of this course is to study the set of Mebi transformations. We
have the following important result.

Proposition 3.5.1
Let Meb( H) denote the set of all Mebius transformations of H. Then Meb(H) is a group
under composition.

Remark.  The group operation is composition: given two Mebius trandormations 1; 2 2
, we denote by ; , the composition 1 . (Important note! This is not multiplication
of the two complex numbers 1(z) »(z); it is the compaosition 1( 2(2)).)

Exercise 3.4
Prove Proposition 3.5.1. (To do this, you must: (i) show that the composition ; , of
two Mebius transformations is a Mebius transformation, ( ii) check associativity (hint: you
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already know that composition of maps is associative), (i) show that the identity map z 7!
Z is a Mebius transformation, and (iv) show thatif 2 Meb( H) is a Mebius transformation,
then ! exists and is a Mebius transformation.)

Examples of Mebius transformations of H include: dilations z 7! kz (k > 0), transla-
tions z 7! z+ b, and the inversionz 7! 1=z

Exercise 3.5
Show that dilations, translations and the inversion z 7! 1=z are indeed Mebius transfor-
mations of H by writing them in the form z 7! (az + b)=(cz + d) for suitable a;b;c;d2 R,
ad bc>0.

Let H 2 H be one of our candidates for a geodesic iH, namely H is either a semi-circle
or a straight line orthogonal to the real axis. We show that a Msbius transformation of H
maps H to another such candidate.

Proposition 3.5.2

Let H be either (i) a semi-circle orthogonal to the real axis, or (i) a vertical straight line.
Let be a Mebius transformation of H. Then (H) is either a semi-circle orthogonal to
the real axis or a vertical straight line.

Proof. By Exercise 3.3 we know that Mebius transformations of H map the upper half-

plane to itself bijectively. Hence it is su cient to show tha t maps vertical straight lines

in C and circles in C with real centres to vertical straight lines and circles with real centres.
A vertical line or a circle with a real centre in C is given by an equation of the form

zz+ z+ z+ =0 (3.5.1)
for some ; ; 2 R. Let
w= (2)= az+ b
B " ocz+ d
Then
_dw Db
~ cw+ a’

Substituting this into (3.5.1) we have:

dw b dw b dw b dw b
+ +

cW+ a cw+ a cw+ a oW+ a =0
Hence
(dw b)(dw b+ (dw b( cw+ a)
+ (dw b( cw+a+ ( cw+a) cw+a)=0
and simplifying gives
(d? 2cd+ c)ww+( bd+ ad + bc ac)w
+( bd+ ad + bc ac)w+(b? 2ab+ a?)=0
which is the equation of either a vertical line or a circle with real centre. 2
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4. Mebius transformations and geodesics in H

x4.1 More on Msbius transformations

Recall that we have de ned the upper half-plane to be the setH = fz 2 CjIm(z) > Og
and the boundary of H is denedtobe @1 =fz2 Cjim(z)=0g|[flg
Let a;b;c;d2 R be such thatad bc > 0. Recall that a map of the form

az+ b
cz+d

(2) =

is called a Mebius transformation of H. Mebius transformations of H form a group (under
composition) which we denote by Meb(H).

We can extend the action of a Mebius transformation of H to the circle at in nity
@1 of H as follows. Clearly mapsR to itself, except at the point z = d=cwhere the
denominator is unde ned. We dene ( d=g = 1. To determine (1 ) we write

a+ b=z
c+ d=z

(2) =

and notice that 1=z! Oasz!1l . Thuswe dene (1 )= a=c (Note thatif c= 0 then,
asad bc > 0, we cannot have eithera = 0 or d = 0. Thus we can make sense of the
expressionsa=cand d=cwhenc=0 by setting a0=1 and d=0=1))

Exercise 4.1
Show that if ad bc6 0 then maps @H to itself bijectively.

The following important result says that Mebius transform ations of H preserve distance.
A bijective map that preserve distance is called anisometry. Thus Mebius transformations
of H are isometries ofH.

Proposition 4.1.1
Let be a Mebius transformation of H and let z;: z2°2 H. Then

du( (2); (2% = du(z:2):

Proof. If is a path from z to z°then is a path from (z) to (z9. Moreover, any
path from (z) to (29 arises in this way. Hence to prove the proposition it is su cient to
prove that length( ) = length 4( ).

It is an easy calculation to check that for anyz 2 H

. . ad bc
i 2i= s
and (ad bo
a
Im( (2)) = jcz+ a2 m(2):
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Hence, using the chain rule,

U (G L/
L imC
_ C i wi Wiy,
mC )
_ ad bc . q je )+ d? 1
cora@ V% Be im @)
i w
im( () ™
= length 4( ):

lengthy (

dt

Exercise 4.2
Prove the two facts used in the above proof:

ad bc.
jez+ dj?’
Im( (2)) = MIm(z):

jcz+ dj?

i 21 =

Exercise 4.3

Letz=x+iy 2 Handdene (z)= x+iy. (Notethat isnot a Mebius transformation
of H.)

(i) Show that mapsH to H bijectively.
(i) Let :[a;b! H be a dierentiable path. Show that
lengthy ( ) =length 4( ):

Hence conclude that is an isometry of H.

x4.2 The imaginary axis is a geodesic

We are now in a position to calculate the geodesics|the paths of shortest distance|in H.
Our rst step is to prove that the imaginary axis is a geodesic

Proposition 4.2.1

Let a b. Then the hyperbolic distance betweenia and ib is logb=a Moreover, the vertical
line joining ia to ib is the unique path betweenia and ib with length logb=g any other
path from ia to ib has length strictly greater than log b=a

Proof. Let (t)=it,a t b Then is a path fromia to ib. Clearly k qt)k =1 so
that Z,

lengthy () = %dt =log b=a:

a
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Now let (t) = x(t)+ iy(t):[0;1]! H be any path fromia to ib. Then

24P xqt)? + yqt)?
ol y(t)
iyqw)i
PTON
o Y()
log y()j
log b=a:

dt

lengthy ()

Hence any path joiningia to ib has hyperbolic length at least logh=a with equality precisely
when x{t) = 0. This can only happen whenx(t) is constant, i.e. is the vertical line joining
ia to ib. 2

x4.3 Mapping to the imaginary axis

So far we have seen that the imaginary axis is a geodesic. Weadin that any vertical
straight line and any circle meeting the real axis orthogondly is also a geodesic. The rst
step in proving this is to show that one of our candidate geodsics can be mapped onto the
imaginary axis by a Mabius transformation of H.

Remark.  Our candidates for the geodesics can be described uniquely ibheir end points
in @4. Semi-circles orthogonal toR have two end points in R, and vertical lines have one
end point in R and the other at 1 .

Lemma 4.3.1
Let H 2 H. Then there exists 2 Meb(H) suchthat mapsH bijectively to the imaginary
axis.

Proof. If H is the vertical line Re(z) = a then the translation z 7! z ais a Mebius
transformation of H that maps H to the imaginary axis Re(z) = 0.
Let H be a semi-circle with end points ; + 2 R, < .. Consider the map

— Z + .
(2)=
As + 4+ > 0 this is a Mebius transformation of H. By Lecture 3 we know that

(H)2H.Clearly (+)=0and ( )= 1,so (H) mustbe the imaginary axis. 2

Exercise 4.4

Let H1;H2 2 H. Show that there exists a Mebius transformation of H that maps H; to
Ho.
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5. More on the geodesics in H

x5.1 Recap

Recall that we are trying to nd the geodesics|the paths of sh ortest lengthjin  H. We
claim that the geodesics are given by the vertical half-lins in H and the semi-circles inH
that meet the real axis orthogonally; equivalently, these mths are the intersection with H
of solutions to equations of the form

zz+ z+ z+ =0

where ; ; 2 R. We denote the set of such paths byH.
So far we have proved the following facts:

(i) Mebius transformations of H map an element ofH to an element ofH;

(i) Mebius transformations of H are isometries (meaning: they preserve distancely( (z); (z9) =
du(z; 29 for all z;z°2 H);

(i) the imaginary axis is a geodesic and, moreover, it is tke unique geodesic betweeia
and ib, (a;b2 R;a;b > 0);

(iv) given any elementH of H we can nd a Mebius transformation of H that maps H to
the imaginary axis.

The goal of this lecture is to prove that the geodesics are whawe claim they are and,
moreover, that given any two points z;z°2 H there exists a unique geodesic between them.

x5.2 Geodesics in H

Our rst observation is a generalisation of fact (iv) above. It says that given any geodesicH
and any point zg on that geodesic, we can nd a Mebius transformation of H that maps H
to the imaginary axis and zp to the point i. Although this result is not needed to prove that
the geodesics are what we claim they are, this result will pree extremely useful in future
lectures. Recall that in Euclidean geometry, there is (usudly) no loss in generalisation to
assume that a given straight line is an arc of thex-axis and starts at the origin (if you draw
a triangle then instinctively you usually draw it so that one side is horizontal). This result
is the hyperbolic analogue of this observation.

Lemma 5.2.1

Let H 2H and let zg 2 H. Then there exists a Mabius transformation of H that maps H
to the imaginary axis and zy to i.

Proof. Proceed as in the proof of Lemma 4.3.1 to obtain a Mebius trasformation 1 2
Meb( H) mapping H to the imaginary axis. (Recall how we did this: There are two @ses,
(i) H is a vertical half-line, (i) H is a semi-circle orthogonal to the real axis. In case (i) we
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take to be a translation. In case (i) we assume thatH has endpoints < . and then
dene (2)=(z +)=(z ).)
Now 1(zp) lies on the imaginary axis. For any k > 0, the Mebius transformation
2(2) = kz maps the imaginary axis to itself. For a suitable choice ofk > 0 it maps 1(zp)
to i. The composition = , 1 is the required Mebius transformation. 2

Exercise 5.1
Let H1;H>2H andlet z; 2 Hq;z2 2 Ho. Show that there exists a Mebius transformation
2 Meb(H) such that (H;) = H; and (z1) = z». In particular, conclude that given
Z1;2Z, 2 H, one can nd a Mebius transformation 2 Meb(H) such that (z1) = zo.
(Hint: you know that there exists 1 2 Mab( H) that maps H1 to the imaginary axis and
z; to i; similarly you know that there exists , 2 Meb( H) that maps H to the imaginary
axis and z to i. What does , ' do?)

Theorem 5.2.2

The geodesics irH are the semi-circles orthogonal to the real axis and the vertal straight
lines. Moreover, given any two points inH there exists a unique geodesic passing through
them.

Proof. Let z;z°2 H. Then we can always nd some element ofH 2 H containing
z;2% Apply the Mebius transformation 2 Meb(H) constructed in Lemma 4.3.1 so that

(2); (29 lie on the imaginary axis. By Proposition 4.2.1 the imaginary axis is the unique
geodesic passing through (z) and (z9. By applying ! we see thatH is the unique
geodesic passing througlz, z° 2

Exercise 5.2
For each of the following pairs of points, describe (either | giving an equation in the form
zz+ z + z+ ,orinwords) the geodesic between them:

() 3+4i, 3+5i,
(i) 3+4i, 3+4i,
(i)  3+4i,5+12i.

x5.3 Isometries of H

We have already seen that Mebius transformations ofH are isometries ofH. Are there any
others?

First let us recall the Euclidean case. In Lecture 1 we statedhat the isometries of the
Euclidean plane R? are:

(i) translations of the form (5,.2,)(X;y) = (X + a1y + a2),
(iii) rotations of the plane,
(iv) re ections in a straight line (for example, re ection i n the y-axis, (X;y) 7! ( X;y)),

together with the identity. Translations and rotations are orientation-preserving whereas
re ections are orientation-reversing.

Proposition 4.1.1 shows that Mebius transformations of H are isometries. Exercise 4.3
shows that there are other isometries. However, note that Mwius transformations of H
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are also orientation-preserving (roughly this means the fdowing: Let be a triangle in
H with vertices A;B;C, labelled anticlockwise. Then is orientation-preserving if ()
has vertices at (A); (B); (C) and these are still labelled anti-clockwise). Note that

(z) = x+ iy reects the point z in the imaginary axis, and is orientation-reversing. One
can show that all orientation-preserving isometries ofH are Mebius transformations of H,
and all orientation-reversing isometries ofH are the composition of a Mebius transformation
of H and the re ection in the imaginary axis.

x5.4 Euclid's parallel postulate fails

We can now see that Euclid's parallel postulate fails inH. That is, given any geodesic and
any point not on that geodesic there existin nitely many geodesics through that point
that do not intersect the given geodesic (see Figure 5.4.1).

Figure 5.4.1 : There are in nitely many geodesics through P that do not intersect the
geodesicH

x5.5 The distance between arbitrary points

So far, we only have a formula for the hyperbolic distance beteen points of the formia
and ib. We can now give a formula for the distance between any two paits in H. We will
need the following (easily proved) lemma.

Lemma 5.5.1
Let be a Mebius transformation of H. Then for all z;w 2 H we have

i@ wi=ijz wij @i Wit

Proposition 5.5.2
Let z;w 2 H. Then
iz wj?

COShdH(Z;W) =1+ m:

(5.5.1)

Exercise 5.3
Prove Proposition 5.5.2 using the following steps. Forz;w 2 H let
LHS(z;w) = coshdy(z;w)
. 2
RHS(z;w) = jz_ W

+
2Im(z) Im(w)
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denote the left- and right-hand sides of (5.5.1) respectiviy. We want to show that LHS(z;w) =
RHS(z; w) for all z;w 2 H.

() Let 2 Meb(H) be a Mebius transformation of H. Using the fact that is an
isometry, prove that
LHS( (2); (w)) =LHS(z;w):

Using Exercise 4.2 and Lemma 5.5.1, prove that

RHS( (2); (w)) = RHS( z;w):

(i) Let H denote the geodesic passing througlz;w. By Lemma 4.3.1, there exists a
Mebius transformation 2 Meb( H) that maps H to the imaginary axis. Let (z) = ia
and (w) = ib. Prove, using the fact that dy(ia;ib) = log b=aif a < b, that for this
choice of we have

LHS( (2); (W)) =RHS( (2); (w)):

(iii) Conclude that LHS( z;w) = RHS( z;w) for all z;w 2 H.

Exercise 5.4

A hyperbolic circle C with centre zg 2 H and radiusr > 0 is de ned to be the set of all
points of hyperbolic distancer from z;. Using (5.5.1), show that a hyperbolic circle is a
Euclidean circle (i.e. an ordinary circle) but with a di ere nt centre and radius.

Exercise 5.5
Recall that we de ned the hyperbolic distance by rst de nin g the hyperbolic length of a
piecewise di erentiable path

il 1
Im( (t)) Im(z)"
We then saw that the Mebius transformations of H are isometries.

Why did we choose the function EIm z in (5.5.2)? In fact, one can chooseany positive
function and use it to de ne the length of a path, and hence the distance between two
points. However, the geometry that one gets may be very comjdated (for example, there
may be many geodesics between two points); alternatively, tie geometry may not be very
interesting (for example, there may be very few symmetriesj.e. the group of isometries is
very small).

The group of Mebius transformations of H is, as we shall see, a very rich group with lots
of interesting structure. The point of this exercise is to stow that if we want the Mebius
transformations of H to be isometries then we must de ne hyperbolic length by (5.52).

Let :H'! R be a continuous positive function. De ne the -length of a path
[a;b! H to be 7 7

b

length () = = ( (1) Aidt:

a

(i) Suppose that length is invariant under Mebius transformations of H, i.e. if 2
Meb( H) then length ( ) =length ( ). Prove that

( @) @i= @: (5.5.3)

R
(Hint: you may use the fact that if f is a continuous function such that f =0 for
every path thenf =0.)

lengthy( ) =

(5.5.2)
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(i) By taking (z) = z+ bin (5.5.3), deduce that (z) depends only on the imaginary
part of z. Hence we may write as (y) wherez= x + iy.

(i) By taking (z) = kz in (5.5.3), deduce that (y) = c=y for some constantc > 0.

Hence, up to a normalising constantc, we see that if we require the Mebius transformations
of H to be isometries, then the distance inH must be given by the formula we introduced
in Lecture 2.

x5.6 Pythagoras' Theorem

In Euclidean geometry, Pythagoras' Theorem gives a relatiaship between the three side
lengths of a right-angled triangle. Here we prove an analogas result in hyperbolic geometry
using Proposition 5.5.2.

Theorem 5.6.1 (Pythagoras' Theorem for hyperbolic triangl es)
Let be aright-angled triangle in H with internal angles ; ; = 2 and opposing sides with
lengths a; b;c Then

coshc = coshacoshb: (5.6.1)

Remark. If a;b;c are all very large then approximately we havec a+ b log2.
Thus in hyperbolic geometry (and in contrast with Euclidean geometry), the length of
the hypotenuse isnot substantially shorter than the sum of the lengths of the othe two
sides.

Proof. Let be a triangle satisfying the hypotheses of the theorem. By applying a
Mebius transformation of H, we may assume that the vertex with internal angle =2 is at
i and that the side of length b lies along the imaginary axis. It follows that the side of
length a lies along the geodesic given by the semi-circle centred até origin with radius
1. Therefore, the other vertices of can be taken to be at ki for somek > 0 and ats+ it,
wheres + it lies on the circle centred at the origin and of radius 1. See ure 5.6.2.

ki

s+ it

Figure 5.6.2 : Without loss of generality, we can assume that has vertices at i, ki and
S+ it

Recall from Proposition 5.5.2 that for any z;w 2 H
iz wj?

coshdy(z;w) =1+ W:
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Applying this formula to the the three sides of we have:

. . .2 2 2
cosha = 1+ JS+I(+1)J =1+ w = %; (5.6.2)
2 2
coshb = 1+ & 2k1) - 1;(" ; (5.6.3)
a js+i(t  k)j? _ 2+ (t k)2 1+k?
coshc = 1+ K =1+ oK = ok (5.6.4)

where to obtain (5.6.2) and (5.6.4) we have used the fact thas? + t2 =1, as s+ it lies on
the unit circle.
Combining (5.6.2), (5.6.3) and (5.6.4) we see that

coshc = coshacoshb;

proving the theorem. 2

x5.7 Angles

Suppose that we have two paths ; and » that intersect at the point z 2 H. By choosing
appropriate parametrisations of the paths, we can assume tat z = 1(0) = »(0). The
angle between 1 and , at z is de ned to be the angle between their tangent vectors at
the point of intersection and is denoted by\ 2(0); $(0),

1

Figure 5.7.3 : (i) The angle between two vectors, (ii) The angle between tvwo paths at a
point of intersection

It will be important for us to know that Mebius transformati ons preserve angles. That
is, if 1 and » are two paths that intersect at z with angle , then the paths ;and >
intersect at (z) also with angle . If a transformation preserves angles, then it is called
conformal.

Proposition 5.7.1
Let 2 Meb(H) be a Mebius transformation of H. Then is conformal.

x5.8 Area

Let A H be a subset of the upper half-plane. The hyperbolic area of is de ned to be
the double integral
ZZ ZZ

Areay(A) = iz dxdy = 1
AY

. 7Im(z)2 dz:

Again, it will be important for us to know that Mebius transf ormations preserve area.
This is contained in the following result.
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Proposition 5.8.1
Let A Handlet 2 Meb(H) be a Mebius transformation of H. Then

Areay( (A)) = Areay(A):

x5.9 Appendix: Towards Riemannian geometry

x5.9.1 Introduction

The aim of this appendix is to explain why hyperbolic angles ad Euclidean angles are the
same, why Mebius transformations are conformal, why we dene hyperbolic area as we do,
and why Mebius transformations are area-preserving. Thisis somewhat outside the scope
of the course as it is best explained using ideas that lead orota more general construction
called Riemannian geometry of which hyperbolic geometry ione particular case.

x5.9.2 Angles

We de ned angles in the upper half-plane model of hyperbolicgeometry to be the same
as angles in Euclidean geometry. To see why this is the caser(d, indeed, to see how the
concept of "angle' is actually de ned) we need to make a slighdiversion and recall some
facts from linear algebra.

Let us rst describe how angles are de ned in the Euclidean pane R?. Let (x;y) 2 R?
and suppose thatv = (v1;Vv,) and w = (wj;w,) are two vectors at the point (x;y). We

w

Ao

(x;y)

Figure 5.9.4 : The angle between two vectorsv;w and the point (X;y).
de ne an inner product h; i between two vectorsv;w that meet at the point ( x;y) by
Vi Wi (x.y) = VIWL + VoWo!

We also de ne the norm of a vector v at the point (x;y) by

- q
kVKxy) = W Vigeyy = V2 + V3

The Cauchy Schwartz inequality says that

TV Wi eyy ) K VK ey KWKy -

30



MATH3/4/62051 5. More on the geodesics irH

We de ne the (Euclidean) angle =\ v;w between the vectorsv; w meeting at the point

(x;y) by _
hv; Wi ()

KVK(xy ) KWK(x:y)

Cos =

(Note that we are not interested in the sign of the angle: for ar purposes angles can be
measured either clockwise or anti-clockwise so that v;w =\ w;Vv.)

In the upper half-plane, we have a similar de nition of angle, but we use a di erent
inner product. Supposez 2 H is a point in the upper half-plane. Let v;w be two vectors
that meet at z. We de ne the inner product of v;w at z by

hv; wi, = (Viwyg + vowy)

1
Im(z)2

(that is, the usual Euclidean inner product but scaled by a factor of 1=Im(z)2.) We also
de ne the norm of the vector v at z by

SJ— 1

kvk, = hv;vig = ime2) Vi + V3

The Cauchy-Schwartz inequality still holds and we can de nethe angle =\ v;w between
two vectors v; w meeting at z by

hv; wi,

€S = RV kwk,

(5.9.1)

Notice that, as the terms involving Im(z) cancel, this de nition of angle coincides with the
Euclidean de nition.

Suppose that we have two paths ;; » that intersect at the point z = 1(0) = 5(0).
Then we de ne the angle between 1; , to be

\ 20); %0);

that is, the angle between two paths is the angle between theitangent vectors at the point

of intersection.
1

Figure 5.9.5 : (i) The angle between two vectors, (ii) The angle between tvo paths at a
point of intersection

x5.9.3 Conformal transformations

De nition. A map :H! H is said to beconformal if it preserves angles between
paths. Thatis, if 1; 2 intersect at z with angle , then the angle between the intersection
of the paths 1; s at (z)isalso .
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We will see that Mebius transformations of H are conformal. To see this, we need to recall
the following standard result from complex analysis.

Proposition 5.9.1 (Cauchy-Riemann equations)
Let f : C! C be a (complex) dierentiable function. Write f asf (x + iy) = u(x;y) +
iv(X;y). Then

@Qu_ @v @u_ @v

@x @y @y @x

Proposition 5.9.2
Let 2 Meb(H) be a Mebius transformation of H. Then is conformal.

Proof (sketch). Let be a Mebius transformation of H and write in terms of its real
and imaginary parts as (x + iy) = u(x;y) + iv(x;y). Regarding H as a subset ofC, we
can view as a mapR?! R2. The matrix of partial derivatives of is given by

Ux Uy

D (2)= Y vy

where we write uy = @u=@Xx

Let 1; »be pathsthatintersectatz= 1(0)= »(0) with tangent vectors $(0); 9(0).
Then jand ;are pathsthatintersectat (z)withtangentvectors D (z) $(0);D (z) 9(0)
where D (z) denotes the matrix of partial derivatives of at z.

Let v = (v1;Vv2);w = (wq; W) be two vectors at the point z. By (5.9.1) it is su cient
to prove that

D (v);D Wi ¢ _ hiwiz
kD (V)k kD (W)k ()  kvk kwk,’
Notice that 1
D (v);D (Wi ) = WW;(D )TD (W)

where O )T denotes the transpose oD . Using the Cauchy-Riemann equations, we see

that

2 2
Uy V Uy u us + u 0
(DT)D = X A X y

242
Uy Vy Vyx  Vy 0 ug +u

y
a scalar multiple of the identity matrix. It is straight-for ward to see that this implies the
claim. 2

Remark. In fact, we have proved that any complex di erentiable function is conformal.

x5.9.4 Hyperbolic area

Before we de ne hyperbolic area, let us motivate the de nition by recalling how the hyper-
bolic length of a path is de ned.
Let :[a;b! H be a path. Then the hyperbolic length of is given by

21 _fviqy
m@ . im( @)

In light of the above discussion, we can write this as
Zy
lengthy( )= k Atk () dt;
a

length,( ) =

32



MATH3/4/62051 5. More on the geodesics irH

Intuitively, we are approximating the path by vectors of length k (t)% ) and then
integrating.

qt)

Figure 5.9.6 : The path can be approximated at the point (t) by the tangent vector

qt).

Let A H be a subset of the upper half-plane. How can we intuitively dene the area
of A? If we take a point z 2 A then we can approximate the area nearz by taking a small
rectangle with sidesdx; dy. The area of this rectangle is given by the product of the lenths
of the sides, namely

7Im(z)2dx dy:
This suggests that we de ne the hyperbolic area of a subseA H to be

Figure 5.9.7 : The area of A can be approximated at the point z by a small rectangle with
sidesdx; dy.

ZZ 1 ZZ 1
A A) = ——dz= — ;
reay(A) Tm(2)? dz R dx dy
By de nition, isometries of the hyperbolic plane H preserve lengths. However, it is not

clear that they also preserve area. That they do is containedn the following result:

Proposition 5.9.3
Let A Handlet 2 Meb(H) be a Mebius transformation of H. Then

Areay( (A)) = Areay(A):
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Proof (sketch). Let (z)=(az+ b)=(cz+ d);ad bc >0 be a Mebius transformation.
Let h: R?! R and recall the change-of-variables formula:
Z Z Z Z
h(x;y) dxdy = h  (x;y)jdet(D )jdxdy (5.9.2)
(A) A
where D is the matrix of partial derivatives of
Using the Cauchy-Riemann equations (and brute force!), onean check that

(ad  bg?

det(D ): ((CX+ d)2 + C2y2)2:

The hyperbolic area of A is determined by setting h(x;y) = 1=y? in (5.9.2). In this
case, we have that

(cx+ d)2+ y? 2

h (xy)= @ boy
and it follows that
Z Z
Areay( (A)) = h(x;y) dxdy

zz®
= h (x;y)jdet(D )jdxdy
_ 27 (cx+ d)2 + &2 2 ad bc 2dxd
~ ,a  (ad boy (cx+ 2+ &2 Y
= idxdy

AY?

= Areay(A):
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6. The Poincae disc model

x6.1 Introduction

So far we have studied the upper half-plane model of hyperbi@ geometry. There are several
other ways of constructing hyperbolic geometry; here we desibe the Poincae disc model.

De nition. The discD = fz 2 Cj jzj < 1g is called the Poincae disc. The circle
@ =1z2Cjjzj=1qgis called thecircle at 1 or boundary of D.

One advantage of the Poincae disc model over the upper hatplane model is that the
unit disc D is a bounded subset of the Euclidean plane. Thus we can viewll of the
hyperbolic plane easily on a sheet of paper (we shall see sorp&tures of this in the next
lecture). One advantage of the upper half-plane model overhe Poincae disc model is the
ease with which Cartesian co-ordinates may be used in calcations.

The geodesics in the Poincae disc model of hyperbolic geoatry are the arcs of circles
and diameters in D that meet @ orthogonally. We could de ne a distance function and
develop an analysis analogous to that of the upper half-plaa H in lectures 2{5, but it is
quicker and more convenient to transfer the results from theupper half-plane H directly to
this new setting.

To do this, consider the map _
z i
iz 1
(Note that h is not a Mebius transformation of H; it does not satisfy the condition that
ad bc > 0. Itis easy to check that h maps the upper half-planeH bijectively to the
Poincae disc. Moreover, h maps @ to @D bijectively.

h(z) = (6.1.1)

x6.2 Distances in the Poincae disc

We give a formula for the distance between two points in the Pincae model of the hyper-
bolic plane. We do this (as we did in the upper half-plane) by rst de ning the length of
a (piecewise di erentiable) path, and then de ning the distance between two points to be
the in mum of the lengths of all such paths joining them.

Let g(z) = h %(z). Then g mapsD to H and has the formula

z+ i
iz+1"

9(2) =

Let :[a;b! D be a pathin D (strictly, this is a parametrisation of a path). Then
g :[a;b! His a path in H. The length of g is given by:

0i@ Wi, - “Pigt (i Wiy,

lengthy(g )= . Im(g () . Im(g @)
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using the chain rule. It is easy to calculate that

2
90 = a2
and 1 7
Im(g(2)) = iz 12
Hence Z,
2
length = — > (t)jdt 6.2.1
We de ne the length of the path in D by (6.2.1):
Z, 5 0(
length = — t)j dt:

In the upper half-plane, we integrate 1=Im(z) along a path to obtain its length; in the
Poincae disc, we integrate 2=(1 j zj?) instead.

The distance between two pointsz;z°2 D is then de ned by taking the length of the
shortest path between them:

dp(z; 2% =inf flengthp( )j is a piecewise di erentiable path from z to z%:

As we have usedh to transfer the distance function on H to a distance function on D
we have that
dp(h(z); h(w)) = dy(z;w); (6.2.2)

where dy denotes the distance in the upper half-plane modeH.

Proposition 6.2.1

Let x 2 [0;1). Then

1+x
1

Moreover, the real axis is the unique geodesic joinin@ to Xx.

dp(0; x) =log

Exercise 6.1
Check some of the assertions above, for example:

(i) Show that h mapsH to D bijectively. Show that h maps @1 to @ bijectively.

(i) Calculate! g(z) = h %(z) and show that

_ 1z

0= e
(iii) Mimic the proof of Proposition 4.2.1 to show that the re al axis is the unique geodesic
joining 0 to x 2 (0;1) and that

1+ X

dp(0; x) =log 1

H1f you carefully compare the formul for g and for h then you might notice a similarity! However,
remember that they are di erent functions: g maps D to H whereash maps H to D.
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x6.3 Mdbius transformations of the Poincae disc

Let 2 Meb(H). Then we obtain an isometry of the Poincae disc D by using the maph to
transform  into a map of D. To see this, consider the maph h 1. Then for any u;v 2 D

dothh Y(u);hh (v)) = du(h Yu); h (v))

du(h *(u);h *(v))
dpo(u;Vv):

Henceh h 1!is an isometry of D.

Exercise 6.2
Show that z 7! h h 1(z) is a map of the form

z +
| oo Cio2 2 .
De nition. We call a map of the form
z+ L2 s 20 o
>+ 2CJ17) 1°>0

a Maebius transformation of D. The set of all Mebius transformations of D forms a group,
which we denote by Meb(D).

Examples of Mebius transformations of D include the rotations. Take = e=2. =0.

Thenj j? j j?=1>0sothat (z)= €72z=e "2 = ¢€ zis a Mebius transformation of
D. Observe that this map is a rotation of the unit circle in C.

x6.4 Geodesics in the Poincae disc

The geodesics in the Poincae disc are the images undén of the geodesics in the upper
half-plane H.

Figure 6.4.1 : Some geodesics in the Poincae dis®
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Proposition 6.4.1
The geodesics in the Poincae disc are the diameters dD and the arcs of circles inD that
meet @ at right-angles.

Proof (sketch). One can show thath is conformal, i.e. h preserves angles. Using the
characterisation of lines and circles inC as solutionsto z z+ z + z+ =0 one can show
that h maps circles and lines inC to circles and lines inC. Recall that h maps @1 to @.
Recall that the geodesics inH are the arcs of circles and lines that meet@d orthogonally.
As h is conformal, the image inD of a geodesic inH is a circle or line that meets @
orthogonally. 2

In the upper half-plane modelH we often map a geodesi¢d to the imaginary axis and
a point zg on that geodesic to the pointi. The following is the analogue of this result in
the Poincae disc model.

Proposition 6.4.2
Let H be a geodesic irD and let zop 2 H. Then there exists a Mebius transformation of D
that maps H to the real axis and zy to 0.

x6.5 Areain D

Recall that the area of a subsetA H is de ned to be
ZZ
1

AreaH(A) = A W dz:

We can again useh to transfer this de nition to D. Indeed, one can check that ifA D
then ZZ

4
Areap(A) =

NS

Exercise 6.3
Let C = fw 2 D j dp(zp;w) = rg be a hyperbolic circle in D with centre zy and radius
r > 0. Calculate the circumference and area o€.

[Hints: First move C to the origin by using a Mebius transformation of D. Use the
formula dp(0;x) = log(1 + x)=(1 x) to show that this is a Euclidean circle, but with a
di erent radius. To calculate area, use polar co-ordinates]
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x6.6 A dictionary

Upper half-plane Poincae disc
H=fz2Cjim(z)>0g | D=fz2Cjjzj< 1g
Boundary @1 = R[flg @=1fz2Cjjzj=1g
YN -b s
Length of a path . A (i)J qt)j dt A (El)jzj qt)j dt
Area of a subsetA . W dz . m dz
Orientation-preservin (2) = azt b (2) = z*
P g cz+ d’ z+
isometries a;b;c;d2 R, . 2C,
ad bc>0 i’ i?>0
Geodesics vertical half-lines diameters of D
and semi-circles and arcs of circles
orthogonal to @ that meet @
orthogonally
Angles Same as Euclidean Same as Euclidean
angles angles
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7. The Gauss-Bonnet Theorem

x7.1 Hyperbolic polygons

In Euclidean geometry, ann-sided polygon is a subset of the Euclidean plane bounded hy
straight lines. Thus the edges of a Euclidean polygon are foned by segments of Euclidean
geodesics. A hyperbolic polygon is de ned in an analogous nmaer.

De nition. Let z;w 2 H[ @H. Then there exists a unique geodesic that passes through
both z and w. We denote by E;w] the part of this geodesic that connectsz and w. We
call [z; w] the segmentor arc of geodesic betweerz and w.

(ii)

Figure 7.1.1 : A hyperbolic triangle (i) in the upper half-plane model, (ii) in the Poincae
disc

Remark. Notice that we allow some of the vertices to lie on the circle &in nity. Such a
vertex is called anideal vertex. If all the vertices lie on @1 then we call P an ideal polygon.
Notice that the angle at an ideal vertex is zero; this is becase all geodesics mee@H at
right-angles and so the angle between any two such geodesiisszero.
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0) (if)

Figure 7.1.2 : An ideal triangle (i) in the upper half-plane model, (ii) in the Poincae disc

X7.2 The Gauss-Bonnet Theorem for a triangle

The Gauss-Bonnet Theorem can be stated in a wide range of comkts. In hyperbolic
geometry, the Gauss-Bonnet Theorem gives a formula for theraa of a hyperbolic polygon
in terms of its angles|a result that has no analogue in Euclid ean geometry. We will use the
Gauss-Bonnet Theorem to study tessellations of the hyperblac plane by regular polygons,
and we will see that there are in nitely many distinct tessellations using regular polygons
(whereas in Euclidean geometry there are only nitely many: equilateral triangles, squares,
and regular hexagons).

Theorem 7.2.1 (Gauss-Bonnet Theorem for a hyperbolic trian gle)
Let be a hyperbolic triangle with internal angles ; and . Then

Areay() = (+ + ) (7.2.1)
Remarks.

1. In Euclidean geometry it is well-known that the sum of the internal angles of a
Euclidean triangle is equal to (indeed, this is equivalent to the parallel postulate). In
hyperbolic geometry, (7.2.1) implies that the sum of the internal angles of a hyperbolic
triangle is strictly less than

2. The equation (7.2.1) implies that the area of a hyperbolictriangle is at most . The
only way that the area of a hyperbolic triangle can be equal to is if all the internal
angles are equal to zero. This means that all of the verticesfdhe triangle lie on the
circle at in nity.

3. In Euclidean geometry, the angles of a triangle do not detemine the triangle's area
(this is clear: scaling a triangle changes its area but not i$ angles). This is not the
case in hyperbolic geometry.

4. There is an interactive java applet illustrating the Gauss-Bonnet Theorem at
http://www.geom.umn.edu/javaltriangle-area/

Proof. Let be a hyperbolic triangle with internal angles ; and
We rst study the case when at least one of the vertices of belongs to @4, and hence
the angle at this vertex is zero. By applying a Mebius transformation of H, we can map this
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vertex to 1 without altering the area or the angles. By applying the Mebius transformation
z 7! z+ bfor a suitable b we can assume that the circle joining the other two vertices $
centred at the origin in C. By applying the Mebius transformation z 7! kz we can assume
it has radius 1. Hence (see Figure 7.2.3)

ZZ 1
Areay() = — dxdy
Zb 1 1
= —dy dx
a p1 X2 y2 y
b 1
1
= — dx
a Y Pi
Z, 1
= p——dx
Za 1 x?

1d substituting x = cos
= ( + ):

This proves (7.2.1) when one of the vertices of lies on@H.

Figure 7.2.3 : The Gauss-Bonnet Theorem with one vertex of at 1

Now suppose that has no vertices in @H. Let the vertices of be A, B and C, with
internal angles , and , respectively. Apply a Mebius transformation of H so that the
side of between vertices A and C lies on a vertical geodesic. Let be the angle atB
between the sideCB and the vertical. This allows us to construct two triangles, each with
one vertex at1 : triangle AB1 and triangle CB1 . See Figure 7.2.4.

Areay() = Area y(ABC)=Areay(AB1) Areay(BC1):

Now

Areay(AB 1)
Areay(BC1)

( +C + )
(( )+ )
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Hence
Areay(ABC) = (+C =+ C C )+ )
= (+ + )
2
C
A

Figure 7.2.4 : The Gauss-Bonnet Theorem for the triangleABC with no vertices on @A

Exercise 7.1

(The point of this exercise is to use the Gauss-Bonnet Theoma to calculate the area of a
given triangle.)

Let be the hyperbolic triangle with vertices at vy =i,v,=2+2i andvz=4+ i.
(i) Calculate the equations of the sides of .

(i) Let C; and C, be two circles in R? with centres ci; ¢, and radii rq;r, respectively.

SupposeC; and C; intersect. Let denote the internal angle at the point of inter-
section (see gure). Show that

jc ) rz2 ori
2riro

Cos =

Figure 7.2.5 : The internal angle between two circles
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(i) Use the Gauss{Bonnet Theorem to show that the area of i s approximately 0.1377.

We can generalise the above theorem to give a formula for theraa of ann-sided polygon.

Theorem 7.2.2 (Gauss-Bonnet Theorem for a hyperbolic polyg on)
Let P be ann-sided hyperbolic polygon with verticesvy;:::; v, andinternal angles 1;:::; n
Then

Areay(P)=(n 2) ( 1+ + ) (7.2.2)
Proof (sketch). Cut up P into triangles. Apply Theorem 7.2.1 to each triangle and then
sum the areas. 2
Exercise 7.2

Assuming Theorem 7.2.1 but not Theorem 7.2.2, prove that thearea of a hyperbolic quadri-
lateral with internal angles 1; 2; 3; a4 is given by

2 (1t 2+ 3t )

x7.3 Tessellations of the hyperbolic plane by regular polygo ns

Recall that a regular n-gon is an n-gon where all n sides have the same length and all
internal angles are equal. We are interested in the followig problem: when can we tile the
plane using regularn-gons with k polygons meeting at each vertex?

In Lecture 1 we remarked that the only possible tessellatios of R? are given by: equi-
lateral triangles (with 6 triangles meeting at each vertex), squares (with 4 squares meeting
at each vertex), and by regular hexagons (with 3 hexagons mdiag at each vertex).

In hyperbolic geometry, the situation is far more interesting: there are in nitely many
di erent tessellations by regular polygons!

Theorem 7.3.1
There exists a tessellation of the hyperbolic plane by regar hyperbolic n-gons with k
polygons meeting at each vertex if and only if

1 1 1

—+ —< = 7.3.1

n k 2 ( )
Proof. We only prove that if there is a tessellation thenn, k satisfy (7.3.1), the converse
is harder. Let denote the internal angle of a regularn-gon P. Then ask such polygons
meet at each vertex, we must have that =2 =k . As the area of the polygonP must be

positive, substituting =2 =k into (7.2.2) and re-arranging we have:
1 1 1
—_ —< =
n k 2
as required. 2

Figures 7.3.6, 7.3.7 and 7.3.8 illustrate some tilings of ta hyperbolic plane. In Fig-
ure 7.3.6, the Poincake disc is tiled by regular hyperbolicoctagons, with 4 octagons meeting
at each vertex. In Figure 7.3.7, the Poincae disc is tiled ky regular hyperbolic pentagons,
with 4 pentagons meeting at each vertex. In Figure 7.3.8, thePoincae disc is tiled by
regular hyperbolic quadrilaterals (hyperbolic squares), with 8 quadrilaterals meeting at
each vertex. All of the hyperbolic octagons (respectively entagons, quadrilaterals) in
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Figure 7.3.6 : A tessellation of the Poincae disc with n =8, k=4

Figure 7.3.6 (respectively Figure 7.3.7, Figure 7.3.8) ha¥ the same hyperbolic area and the
sides all have the same hyperbolic length. They look as if theare getting smaller as they
approach the boundary of the hyperbolic plane because we argying to represent all of
the hyperbolic plane in the Euclidean plane, and necessagil some distortion must occur.
You are already familiar with this: when one tries to represent the surface of the Earth on
a sheet of (Euclidean!) paper, some distortion occurs as orteies to atten out the sphere;
in Figure 7.3.9, Greenland appears unnaturally large compeed to Africa when the surface
of the Earth is projected onto the plane.

Remark. The game "Bejeweled' (playable online for free here:
http://www.popcap.com/games/bejeweled2/online  )works in Euclidean space. The plane
is tiled by (Euclidean) squares (with, necessarily, 4 squags meeting at each vertex). The
aim of the game is to swap neighbouring pairs of squares so théhree or more tiles of the
same colour lie along a geodesic; these tiles then disappea®ne could set up the same
game in hyperbolic space: given a hyperbolic tiling, swap righbouring tiles so that three or
more tiles lie along a common geodesic which, again, then dippear. This is implemented
in the game "Circull', available free for iOS here:
http://itunes.apple.com/gb/app/circull/id3920422237 mt=8.

One technical point that we have glossed over is the exister of regular n-gons in
hyperbolic geometry. To see that such polygons exist we quetthe following result.

Proposition 7.3.2
Let 1;:::; n be such that

X
(n 2 k> 0

k=1
Then there exists a polygon with internal angles .

Proof. See Beardon Theorem 7.16.2. 2
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Figure 7.3.7 : A tessellation of the Poincae disc with n =5, k=4

Remark. One can show that if the internal angles of a hyperbolic polygn are all equal
then the lengths of the sides are all equal. (This is not true m Euclidean geometry: a
rectangle has right-angles for all of its internal angles, it the sides are not all of the same
length.)

Exercise 7.3
Let n 3. By explicit construction, show that there exists a regula n-gon with internal
angle equalto ifandonlyif 2 [0;(n 2)=n).

(Hint: Work in the Poincae disc D. Let ! = €™ be ann™ root of unity. Fix
r 2 (0;1) and consider the polygonD (r) with vertices at r;r!;r! 2;:::;rl ™ 1. Thisis a
regular n-gon (why?). Let (r) denote the internal angle of D(r). Use the Gauss-Bonnet
Theorem to express the area oD (r) in terms of (r). Examine what happens asr ! 0
and asr ! 1. (To examine lim;; oAreayD(r), note that D(r) is contained in a hyperbolic
circle C(r), and use Exercise 6.3 to calculate limn gAreagC(r).) You may use without
proof the fact that (r) depends continuously onr.)

In particular, conclude that there there exists a regular n-gon with each internal angle
equal to a right-angle whenevern 5. This is in contrast with the Euclidean case where,
of course, the only regular polygon with each internal angleequal to a right-angle is the
square.

Exercise 7.4

(This exercise is outside the scope of the course (and them®e not examinable). However,
anybody remotely interested in pure mathematics should getto see what is below at least
once.)

A polyhedronin R? is formed by joining together polygons along their edges. Alatonic
solid is a convex polyhedra where each constituent polygon is a regar n-gon, with k
polygons meeting at each vertex.

By mimicking the discussions above, show that there are prdsely ve platonic solids:
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Figure 7.3.8 : A tessellation of the Poincae disc with n =4, k=8

Figure 7.3.9 : When projected onto a (Euclidean) plane, the surface of theEarth is dis-
torted

the tetrahedron, cube, octahedron, dodecahedron and icos&dron (corresponding to f1; k) =
(3;3);(4;3);(3;4); (5;3) and (3;5), respectively).
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8. Hyperbolic triangles

x8.1 Right-angled triangles

In Euclidean geometry there are many well-known relationslips between the sides and the
angles of a right-angled triangle. For example, PythagorasTheorem gives a relationship
between the three sides. Here we study the corresponding nelés in hyperbolic geometry.

Throughout this section, will be a right-angled triangle.  The internal angles will be

;3 = 2, with the opposite sides having lengthsa; b; c

x8.2 Two sides, one angle

For a right-angled triangle in Euclidean geometry there arewell-known relationships be-
tween an angle and any of two of the sides, namely “sine = oppdse / hypotenuse', “cosine
= adjacent / hypotenuse' and ‘tangent = opposite / adjacent' . Here we determine similar
relationships in the case of a hyperbolic right-angled triangle.

Proposition 8.2.1
Let be aright-angled triangle in H with internal angles ; ; = 2 and opposing sides with
lengths a;b;c Then

() sin  =sinh a=sinhc,
(i) cos =tanh b=tanhc,
(i) tan =tanh a=sinhb.

Proof. As in the proof of Theorem 5.6.1, we can apply a Mebius transbrmation of H to
and assume without loss in generality that the vertices of  are ati;ki and s+ it, where
s+ it lies in the unit circle centred at the origin and the right-angle occurs ati.

The vertices at ki and s+ it lie on a unigue geodesic. This geodesic is a semi-circle
with centre x 2 R. The (Euclidean) straight line from x to ki is inclined at angle from
the real axis. See Figure 8.2.1. The line fronx to ki is a radius of this semi-circle, as is
the line from x to s+ it. Calculating the lengths of these radii, we see that

k?+ x%=(s+ x)?+ t?
so that
k?=1+2sx; (8.2.1)

using the fact that s? + t2 = 1.
By considering the Euclidean triangle with vertices at x; ki; 0, we see that

k 2ks
tan = <"k T (8.2.2)

where we have substituted forx from (8.2.1).
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ki

S+ it

Figure 8.2.1 : The point x is the centre of the semi-circle corresponding to the geodis
through ki and s + it

Using the facts that cosif  sinh? = 1 and tanh = sinh =cosh it follows from (5.6.2) and
(5.6.3) that

k2
sinhb= ; tanha=s:
Combining this with (8.2.2) we see that
an = tanh a_
~ sinhb’

proving statement (iii) of the proposition.
The other two statements follow by using trig identities, relationships between sinh and
cosh, and the hyperbolic version of Pythagoras' Theorem. 2

Exercise 8.1
Assumingthattan =tanh a=sinhb, prove thatsin =sinh a=sinhcand cos =tanh b=tanh c.

Exercise 8.2

We now have relationships involving: (i) three angles (the Gauss-Bonnet Theorem), (ii)
three sides (Pythagoras' Theorem) and (iii) two sides, one mgle. Prove the following
relationships between one side and two angles:

cosha=cos cosec; coshc=cot cot :

What are the Euclidean analogues of these identities?

x8.3 The angle of parallelism

Consider the special case of a right-angled triangle with oe ideal vertex. (Recall that a

vertex is said to beideal if it lies on the boundary.) In this case, the internal anglesof the

triangle are ; 0 and =2 and the only side with nite length is that between the verti ces

with internal angles and =2. The angle of parallelism is a classical term for this angle
expressed in terms of the side of nite length.
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Proposition 8.3.1

Let be a hyperbolic triangle with angles , 0 and =2. Let a denote the length of the
only nite side. Then

. . _ l .
(i) sin = cosha’
.. _ l .
(i) cos = coth a’
e _ l
(i) tan = g

Proof. The three formul for  are easily seen to be equivalent. Therefore we need only
prove that (i) holds.

After applying a Mebius transformation of H, we can assume that the ideal vertex of
isat 1 and that the vertex with internal angle =2 is ati. The third vertex is then easily
seen to be at cos + isin . See Figure 8.3.2.

cos + isin

Figure 8.3.2 : The angle of parallelism
Recall that
iz wi?
2Im(z) Im(w) "
Applying this formula with z=i andw =cos + isin we see that
21 sin) 1
2sin ~ sin

coshdy(z;w) =1+

cosha = coshdy(z;w) =1+

Exercise 8.3

Assuming that sin = 1=cosha, check using standard trig and hyperbolic trig identities
that cos =1=cotha andtan =1=sinha.

x8.4 Non-right-angled triangles: the sine rule

Recall that in Euclidean geometry the sine rule takes the fdbwing form. In a triangle (not
necessarily right-angled) with internal angles; and and side lengthsa; band c we have

sin _ sin _ sin
a b ¢
The hyperbolic version of this is the following.
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Proposition 8.4.1
Let be a hyperbolic triangle with internal angles ; and and side lengthsa; b;c Then

sin _ sin _ sin
sinha sinhb sinhc’

Exercise 8.4
Prove Proposition 8.4.1 in the case when is acute (the obtuse case is a simple modi cation
of the argument, and is left for anybody interested...).

(Hint: label the vertices A;B;C with angle at vertex A, etc. Drop a perpendicular
from vertex B meeting the side A; C] at, say, D to obtain two right-angled triangles ABD ,
BCD . Use Pythagoras' Theorem and Proposition 8.2.1 in both of tlese triangles to obtain
an expression for sin .)

x8.5 Non-right-angled triangles: cosine rules

x8.5.1 The cosine rule |

Recall that in Euclidean geometry we have the following cosie rule. Consider a triangle
(not necessarily right-angled) with internal angles ; and and sides of lengthsa; b and
¢, with side a opposite angle , etc. Then

2= a’+ b 2abcos:
The corresponding hyperbolic result is.

Proposition 8.5.1
Let be a hyperbolic triangle with internal angles ; and and side lengthsa; b;c Then

coshc = coshacoshb sinhasinhbcos :

Proof. See Anderson's book. 2

x8.5.2 The cosine rule I

The second cosine rule is the following.

Proposition 8.5.2
Let be a hyperbolic triangle with internal angles ; and and side lengthsa; b;c Then

COsS cos +cos

coshc = g .
sin  sin

Proof. See Anderson's book. 2

Remark. The second cosine rule has no analogue in Euclidean geometr@bserve that
the second cosine rule implies the following: if we know thenternal angles ; ; of a
hyperbolic triangle, then we can calculate the lengths of is sides. In Euclidean geometry,
the angles of a triangle do not determine the lengths of the sies.
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9. Fixed points of Mdbius transformations

x9.1 Where we are going

Recall that a transformation :H! H of the form

az+ b
cz+d

(2) =

wherea;b;c;d2 R,ad bc > 0, is called a Mebius transformation of H. The aim of the next
few lectures is to classify the types of behaviour that Mebus transformations exhibit. We
will see that there are three di erent classes of Mabius transformation: parabolic, elliptic
and hyperbolic.

x9.1.1 Fixed points of Mebius transformations

Let be a Mebius transformation of H. We say that a point zp 2 H[ @H is a xed point
of if
azg+ b
Zn) = =
(20) 20+ d
Our initial classi cation of Mabius transformations is ba sed on how many xed points a
given Mebius transformation has, and whether they lie in H or on the circle at in nity @M.
Clearly the identity map is a Mebius transformation which  xes every point. Through-
out this section, we will assume that is not the identity.
Let us rst consider the case whenl 2 @H is a xed point. Recall that we calculate
(1) by writing

Zo: (9.1.2)

and noting thatas z!1 we have Fz! 0. Hence (1 )= a=c Thus 1 is a xed point
of ifandonlyif (1 )= 1, and this happens if and only ifc=0.
Suppose thatl is a xed point of so that c = 0. What other xed points can  have?

Observe that now b

(20) = SZO + ai
Hence also has a xed point at zop = bXd a). (Note that if a = d then this point may
bel )

Thusif 12 @A+ isa xed pointfor then has at most one other xed point, and this
xed point also lies on @H.

Now let us consider the case wherl is not a xed point of . In this case, c 6 0.
Multiplying (9.1.1) by czp + d (which is non-zero aszp 6§ d=0 we see thatzp is a xed
point if and only if

cZ+(d a)zg b=0: (9.1.2)
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This is a quadratic in zg with real coe cients. Hence there are either (i) one or two real
solutions, or (ii) two complex conjugate solutions to (9.12). In the latter case, only one
solution liesin H[ @AH.

Thus we have proved:

Proposition 9.1.1
Let be a Mebius transformation of H and suppose that is not the identity. Then has
either:

() two xed points in @4 and none inH;
(i) one xed pointin @+ and none inH;

(iii) no xed points in @H and one inH.

Corollary 9.1.2
Suppose is a Mebius transformation of H with three or more xed points. Then is the
identity (and so xes every point).

De nition. Let be a Mebius transformation of H. We will say that
(i) is hyperbolic if it has two xed points in @4 and none inH,
(i)  is parabolic if it has one xed pointin @ and none inH,

(iii)  is elliptic if it has one xed point in H and none in @H.

Exercise 9.1
Find the xed pointsin H[ @H of the following Mebius transformations of H:

2z+5 1 z
. - + . - . - .

1(2) =

In each case, state whether the map is parabolic, elliptic ohyperbolic.

x9.2 A matrix representation

Let ; and ;, be the Mebius transformations of H given by

az+ by _ @zt by,
Ciz+ d]_’

1(2) =
Then the composition , ; is a Maebius transformation of H of the form

ai1z+bh
a c1z+d; + bz

ajz+hy
CZ c1z+dz + d2

_ (aza1+ pcy)z + (@b + bpds) (9.2.1)
(coaq + daCp)z + (Coby + dodp)” o

2 1(2)

Observe the connection between the coe cients in (9.2.1) ad the matrix product

a by ap b _ apart oy axhy + bpdy
c do C dp Cap + daC1  Coby + dody
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(Thus we can calculate the coe cients of the composition of wo Mebius transformations
1; 2 by multiplying the 2 2 matrices of the coe cients of 1; 2.) We now explore the
connections between Mebius transformations ofH and matrices.

Notice that if
az+b

cz+d

(2) =
is a Mebius transformation of H, then

az + b

7 —
cz + d

gi\ﬁzs the same Mebius transformation of H (provided 6 0). Thus, by taking =
1= (ad bg we can always assume thatad bc=1.

De nition. The Mebius transformation (z) = (az + b)=(cz+ d) of H is said to bein
normalised form (or normalised) if ad bc= 1.

Exercise 9.2
Normalise the Mebius transformations of H given in Exercise 9.1.

We now introduce the following group of matrices.

De nition. The set of matrices
SL(Z;R)= A= i 2 ja;b;c;d2 R; detA=ad bc=1

is called the special linear group ofR?.

Exercise 9.3
(i) Show that SL(2;R) is indeed a group (under matrix multiplication). (Recall t hat G
is a group if: (i) if g;h2 G then gh 2 G, (ii) the identity is in G, (iii) if g2 G then
there existsg ' 2 G such that gg ' = g g = identity.)

(i) De ne the subgroup

a b

SL(2;2) = g

ja;b;c;d2 Z;ad be=1

to be the subset of SL(2R) where all the entries are integers. Show that SL(2Z) is
a subgroup of SL(2R). (Recall that if G is a group andH G then H is a subgroup
if it is itself a group.)

Hence if A 2 SL(2;R) is a matrix with entries ( a; b; c;d) then we can associate a nor-
malised Mebius transformation 2 Meb(H) by de ning a(z) =(az+ b)=(cz+ d).

However, distinct matrices in SL(2; R) can give the same Mebius transformation ofH.
To see this, notice that the two matrices

ab . a b
cd ' ¢ d

wheread bc=1 are both elements of SL(2 R) but give the same Maebius transformation
of H. This, however, is the only way that distinct matrices in SL(2; R) can give the same
Mebius transformation of H.
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Remark. Thus we can think of Meb(H) as the group of matrices SL(2R) with two
matrices A;B identiedi A = B. Sometimes Meb(H) is denoted by PSL(ZR), the
projective special linear group
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10. Classifying Msbius transformations: conjugacy, trac e,
and applications to parabolic transformations

x10.1 Conjugacy of Msbius transformations

Before we start discussing the geometry and classi cation bMebius transformations, we
introduce a notion of 'sameness' for Mebius transformatiams.

De nition. Let 1; 2 2 Meb(H) be two Mebius transformations of H. We say that ;
and » are conjugate if there exists another Mebius transformation g 2 Meb( H) such that

1=g ! 2 g

Remarks.

(i) Geometrically, if ; and , are conjugate then the action of 1 on H[ @A is the same
as the action of , ong(H[ @H). Thus conjugacy re ects a change in coordinates of
H[ @H.

(i) If 2 has matrix A, 2 SL(2;R) and g has matrix A 2 SL(2;R) then 1 has matrix
A 1ALA.

(iii) We can de ne conjugacy for Mebius transformations of D in exactly the same way: two
Mebius transformations 1; » 2 Meb( D) of D are conjugate if there existsg 2 Meb( D)
suchthat ;=g ! 5 g

Exercise 10.1
(i) Prove that conjugacy between Mebius transformations of H is an equivalence relation.

(i) Show that if 1 and » are conjugate then they have the same number of xed
points. Hence show that if 7 is hyperbolic, parabolic or elliptic then » is hyperbolic,
parabolic or elliptic, respectively.

x10.2 The trace of a Mdbius transformation

Recall that if A is a matrix then the trace of A is de ned to be the sum of the diagonal
entries of A. That is, if A =(a;b;c;d) then Trace(A) = a+ d.

Let (z2)=(az+ b)=(czb d) be a Mebius transformation of H, ad bc > 0. By dividing
the coe cients a;b;c;dby ad bg we can always write in normalised form. Assume
that is written in normalised form. Then we can associate to a matrix A = (a;b;c;d);
asad bc=1 we see thatA 2 SL(2;R). However, as we saw in Lecture 9, this matrix is
not unique; instead we could have associated the matrix A=( a; b, c¢; d)to . Thus
we can de ne a function

( )= (Trace( A))? = (Trace( A))?%:
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De nition. Let 2 Meb(H) be a Mebius transformation of H with (z) = (az+ b)=(cz+
d) wheread bc=1. We call ()= (a+ d)? the trace of

The following result says that conjugate Mebius transformations of H have the same
trace.

Proposition 10.2.1
Let 1 and ; be conjugate Mebius transformations of H. Then ( 1) = ( 2).

Exercise 10.2

Prove the above proposition. (Hint: show that if A1;A2;A 2 SL(2;R) are matrices such
that A1 = A 1A,A then Trace(A1) = Trace(A 1A,A) = Trace( A). You might rst want
to show that Trace(AB) = Trace( BA) for any two matrices A; B .)

We can now classify the three types of Mebius transformatia|hyperbolic, parabolic
and elliptic|in terms of the trace function.

Let 2 Meb(H) be a Mebius transformation of H. Suppose for simplicity that 1 is
not a xed point (it follows that c 6 0). Recall from Lecture 9 that zp is a xed point of
if and only if p
a d (a d)2+4bc

2c '

Thus there are two real solutions, one real solution or one aoplex conjugate pair of solu-
tions depending on whether the term inside the square-roots greater than zero, equal to
zero or less than zero, respectively. Using the identities

Zo =

ad bc=1; (a+d)?= ()

it is easy to see that
(a d)?+4bc= () &

When ¢ = 0, we must have that 1 is a xed point. The other xed point is given
by bd a). Hencel is the only xed point if a = d (in which case we must have that
a=1l;d=1lora= 1,d= 1lasad bc=ad=1); hence ()=(1+1)2=4.1f a6 d
then there are two xed points on @1 and one can easily see that( ) > 4.

Thus we have proved:

Proposition 10.2.2
Let 2 Meb(H) be a Mabius transformation of H and suppose that is not the identity.
Then:

(i) is parabolic ifand only if ( )=4;

(i)  is elliptic if and only if () 2 [0;4);

(i) is hyperbolic if and only if () 2 (4;1 ).
x10.3 Parabolic transformations

Recall that a Mebius transformation 2 Meb( H) is said to be parabolic if it has a unique
xed point and that xed point lies on @H.
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For example, the Mebius transformation of H given by
(2)=z+1

is parabolic. Here, the unique xed pointis 1 . In general, a Mebius transformation of H
of the form z 7! z+ bis called atranslation.

Exercise 10.3
Let (z)= z+ b. If b> 0 then show that is conjugate to (z) = z+1. If b <0 then show
that isconjugateto (z)=z 1. Arez7'z 1;,z7'z+1 conjugate?

Proposition 10.3.1
Let be a Mebius transformation of H and suppose that is not the identity. Then the
following are equivalent

(i) is parabolic;
(i) ()=4;
(i) is conjugate to a translation;

(iv)  is conjugate either to the translation z 7! z+ 1 or to the translation z7! z 1.

Proof. By Proposition 10.2.2 we know that (i) and (ii) are equivalent. Clearly (iv) implies
(iif) and the exercise above implies that (i) implies (iv) .

Suppose that (iv) holds. Recall thatz 7! z+1 has a unique xed pointat 1 . Hence if
is conjugate toz 7! z+1 then has a unique xed point in @, and is therefore parabolic.
The same argument holds forz 7! z 1.

Finally, we show that (i) implies (iii). Suppose that is parabolic and has a unique
xed pointat 2 @H. Let g be a Mebius transformation of H that maps to 1 . Then
g g !is a Mebius transformation with a unique xed pointat 1 . We claim that gg ! is

a translation. Write
az+ b

cz+d

g9g (2)=
As 1 is a xed point of g g !, we must have that c = 0 (see Lecture 11). Hence

b

9g Yz)= gz+ i

and it follows that g g ! has a xed pointat bd a). As g g ! has only one xed point
and the xed pointis at 1 we must have thatd = a. Thus gg %(z) = z + b for some
B°2 R. Hence is conjugate to a translation. 2
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11. Classifying Mebius transformations: hyperbolic and
elliptic transformations

x11.1 Introduction

In Lecture 10 we saw how to classify Mebius transformationsof H in terms of their trace
and saw what it meant for two Mebius transformations of H to be conjugate. We then
studied parabolic Mebius transformations of H (recall that a Mebius transformation of H
is said to be parabolic if it has precisely one xed point on@). We saw that any parabolic
Mebius transformation of H is conjugate to a translation.

The aim of this lecture is to nd similar classi cations for h yperbolic Mebius transfor-
mations and for elliptic Mebius transformations.

x11.2 Hyperbolic transformations

Recall that a Mebius transformation of H is said to be hyperbolic if it has exactly two xed
points on @H.
For example, let k > 0 and suppose thatk 6 1. Then the Mebius transformation
(z) = kz of H is hyperbolic. The two xed points are 0 and 1 . In general, a Mebius
transformation of the form z 7! kz wherek 6 1 is called a dilation .

Exercise 11.1
Show that two dilations z 7! kyz, z 7! koz are conjugate (as Mebius transformations ofH)
if and only if k; = ky or ky = 1=ks.

We can now classify hyperbolic Mebius transformations.

Proposition 11.2.1
Let 2 Meb(H) be a Mebius transformation of H. Then the following are equivalent:

(i) is hyperbolic;
i ()>4

(i) is conjugate to a dilation, i.e. is conjugate to a Mebius transformation of H of
the form z 7! kz, for somek > O.

Proof. We have already seen in Proposition 10.2.2 that (i) is equivkent to (ii).

Suppose that (iii) holds. Then is conjugate to a dilation. We have already seen that
a dilation has two xed points in @1, namely 0 andl . Hence also has exactly two xed
points in @1. Hence (i) holds.

Finally, we prove that (i) implies (iii). We rst make the rem ark that if  xes both 0
and 1 then is a dilation. To see this, write

az+b
cz+d

(2)=
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wheread bc>0. As1l isa xed point of , we must have that ¢ = 0 (see Lecture 9).
Hence (z) =(az+ b)=d As 0is xed, we must have that b=0. Hence (z)=(a=dz so
that is a dilation.

Suppose that is a hyperbolic Mebius transformation of H. Then has two xed points
in @H; denote them by i; ».

First suppose that 1 =1 and ,2 R. Let g(z) = z ». Then the Mebius transfor-
mation g g ! is conjugate to and has xed points at 0 and 1 . By the above remark,
gg !is a dilation.

Now suppose that 1 2 R and , 2 R. We may assume that ; < . Let g be the

transformation
z 2
Z) = :
92) = —

As 1+ 5 > 0, this is a Mebius transformation of H. Moreover, asg( 1) = 1 and
g( ) =0, we see thatg g * has xed points at 0 and 1 and is therefore a dilation. Hence
is conjugate to a dilation. 2

Exercise 11.2
Let 2 Meb(H) be a hyperbolic Mebius transformation of H. By the above result, we
know that is conjugate to a dilation z 7! kz. Find a relationship between ( ) and k.

x11.3 Elliptic transformations
To understand elliptic isometries it is easier to work in the Poincae disc D.
Recall from Exercise 6.2 that Mebius transformations of D have the form

Z +

(2) =

— (11.3.1)

where ; 2 Candj j2 j j?>> 0. Again, we can normalise sothatj j> j j2=1. We
have the same classi cation of Mebius transformations, bu this time in the context of D,
as before:

(i) is hyperbolic if it has 2 xed points on @ and 0 xed points in D,
(i)  is parabolic if it has 1 xed point on @ and 0 xed points in D,
(i) is elliptic if it has O xed points on @ and 1 xed point in D.

We can again classify Mebius transformations ofD by using the trace. If is a Mebius
transformation of D and is written in normalised form (11.3.1) then we dene () =
( + )2 ltis then easy to prove that:

(i) is hyperbolic if and only if ( ) > 4;
(i)  is parabolic if and only if ( ) =4,
(iii) is elliptic if and only if () 2 [0; 4).

There are two ways in which we can prove this. Firstly, we coull solve the quadratic equa-
tion (zg) = zg as in Lecture 9 and examine the sign of the discriminant (as irLecture 10).
Alternatively, we can use the maph : H! D, h(z) =(z i)=iz 1) we introduced in
Lecture 6 as follows. Recall that Mebius transformations d D have the formh h ! where
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is a Mebius transformation of H. We can think of h as a ‘change of co-ordinates’ (from

H to D). As in Lecture 10 we can see that is hyperbolic, parabolic, elliptic if and only if
hh 1is hyperbolic, parabolic, elliptic, respectively. By consdering traces of matrices, we
can also see that (hh )= ().

Let be an elliptic Mebius transformation of D, so that there is a unique xed point
in D.

As an example of an elliptic transformation of the Poincae disc D, let 2 (0;2 ) and
consider the map

(2)= € z:

This is a Mebius transformation of D (take = €~2and =0 in (11.3.1)). It acts on D
by rotating the Poincae disc around the origin by an angle of

Proposition 11.3.1
Let 2 Meb(D) be a Mebius transformation of D. The following are equivalent:

() s elliptic;
(i) ()21[04);
(i)  is conjugate to a rotation z 7! € z.

Proof. We have already seen in Proposition 10.2.2 and the discussicabove that (i) is
equivalent to (ii).

Suppose that (iii) holds. A rotation has a unique xed point ( at the origin). If s
conjugate to a rotation then it must also have a unique xed point, and so is elliptic.

Finally, we prove that (i) implies (iii). Suppose that s elliptic and has a unique xed
pointat 2 D. Let g be a Mebius transformation of D that maps to the origin 0. Then
g g !is a Mebius transformation of D that is conjugate to and has a unique xed point
at 0. Suppose that

1y 27
99 ‘@)= —
wherej j? j _j2 > 0. As 0 is a xed point, we must have that = 0. Write  in polar
formas = re' . Then i
re

e o= _ 2
99 (2= —z= =7 e z

so that is conjugate to a rotation. 2

Exercise 11.3
Let 2 Meb(D) be a elliptic Mebius transformation of D. By the above result, we know
that is conjugate to a rotation z 7! € z. Find a relationship between ( ) and

Remark. ~ What do rotations look like in H? Recall the maph: H! D used to transfer
results betweenH and D. If (z) = € z 2 Meb(D) is a rotation of the Poincae disc D then
h 1h 2 Meb(H) is a Mebius transformation of H of the form

cos(=2)z +sin( =2)
sin(=2)z +cos(=2)

h lh(z)= (11.3.2)

This map has a unique xed point at i. Maps of the form (11.3.2) are often calledrotations
of H.
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12. Fuchsian groups

x12.1 Introduction

Recall that the collection of Mebius transformations of H, Meb( H), and Mebius transfor-
mations of D, Meb( D), form a group. There are many subgroups of these groups andi
this section we will study a particularly interesting class of subgroup. Because the following
de nition is so important, we give it here and explain what it means below.

De nition. A Fuchsian groupis a discrete subgroup of either Meab{), the Mebius trans-
formations of H, or Meb( D), the Mebius transformations of D.

x12.2 Discreteness

The concept of discreteness plays an important role in many ieas of geometry, topology
and metric spaces.

A metric space is, roughly speaking, a mathematical space owhich it is possible to
de ne the distance between two points in the space. The cong# of distance must satisfy
some fairly natural assumptions: (i) the distance from a pont to itself is zero, (ii) the
distance from x to y is equal to the distance fromy to x, and (iii) the triangle inequality:
dixy) d(x;z) + d(z;y).

Examples of metric spaces include:

(i) R" with the Euclidean metric

yii2+ 4 jxn  ynai% (12.2.1)

1
;.
iy

(i) the upper half-plane H with the metric dy that we de ned in Lecture 2.

Let (X;d) be a metric space. Heuristically, a subsety X is discrete if every point
y 2 Y is isolated, i.e., the other points of Y do not come arbitrarily close to y. More
formally:

De nition. We say that a point y 2 Y is isolated if: there exists > 0 such thatif y°2 Y
and y°6 y then d(y;y% > . Thatis, a point y in a subsetY is isolated if, for some > 0,
there are no other points of Y within distance of y.

De nition. A subsetY is said to bediscrete if every point y 2 Y is isolated.

Examples.
1. In any metric space, a single pointf xg is discrete.
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2. The set of integersZ forms a discrete subset of the real lineR. To see this, letn 2 Z
be an integer and choose =1=2. Then if jm nj< , we see thatm is an integer a
distance at most 1/2 from n; this is only possible if m = n, as integers lie distance 1
apart.

3. The set of rationals Q is not a discrete subgroup ofR: there are in nitely many
distinct rationals arbitrarily close to any given rational .

4. The subsetY = f1;1=2;1=3;:::;1=n;:::g of R is discrete. To see this, takey = 1=n.
Choose =1=n(n+1). Thenif y°2 Y satises jy° vyj< 1=n(n+1) then y°=1=n
(draw a picture!).

5. The subsetY = f1;1=2;1=3;:::;1=n;:::;g[f Og is not discrete. This is because 0 is
not isolated: points of the form 1=n can come arbitrarily close to 0. No matter how
small we choose , there are non-zero points ofY lying within  of 0.

We will be interested in discrete subgroups of Meb{). That is, we will be studying
subgroups of Mebius transformations of H that form discrete subsets of Meb(H). To do
this, we need to be able to say what it means for two Mebius transformations ofH to be near
one another|we need to de ne a metric on the space Meb(H) of Mebius transformations
of H.

Intuitively, it is clear what we mean for two Mebius transfo rmations of H to be close:
two Mebius transformations of H are close if the coe cients ( a; g c;d) de ning them are
close. However, things are not quite so simple because, as wave seen in Lecture 9,
di erent coe cients ( a;b;c;d) can give the same Mebius transformation.

To get around this problem, we can insist on writing all Mebi us transformations of H
in a normalised form. Recall that the Mebius transformation (z) = (az+ b)=(cz+ d) is
normalised if ad bc= 1. However, there is still some ambiguity because if

az+b
cz+d

(2)=

is normalised, then so is
az b

@)=
This, however, is the only ambiguity (see Lecture 9).

Thus we will say that the (hormalised) Mebius transformati ons of H given by 1(z) =
(a1z + b)=(cyz + dy) and »(z) = (axz + bp)=(cz + dy) are close if either @;;by; ¢y; dy),
(ag;bp; cp;do) are close or @3;by;ci;d1), ( az; by, ©; dp) are close. If we wanted to
make this precise and in particular have a formula, then we cold de ne a metric on the
space Meb(H) of Mebius transformations of H by setting

dwb ( 1; 2) = minfk(as;b;ci;di)  (ag; by e do)k;
k(ar;br;ci;di)  (az; by o do)kg: (12.2.2)

(Here k k is the Euclidean metric in R* de ned by (12.2.1) in the casen = 4.) However,
we will never use an explicit metric on Meb(H) and prefer instead to think of Mebius
transformations of H being close if they "look close' (secure in the knowledge thave could
Il in the details using the metric given above if we had to).

We can also de ne a metric on Meb(D) in exactly the same way. Again, we will never
need to use the formula for this metric explicitly; instead, two Mebius transformations of
D are ‘close' if (upto normalisation) the coe cients de ning them are close.
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x12.3 Fuchsian groups
Recall the following de nition:
De nition. A Fuchsian groupis a discrete subgroup of either Meb{) or Meb( D).

Examples.
1. Any nite subgroup of Meb( H) or Meb( D) is a Fuchsian group. This is because any
nite subset of any metric space is discrete.
2. As a speci c example in the upper half-plane, let

cos(=2)z +sin( =2)
sin(=2)z +cos(=2)

(2) =

be a rotation aroundi. Let g2 N. Thenf ;- jO j g 1gisa nite subgroup.

In D, this is the groupfz 7! €279 zjj =0;1;:::;q 1g of rotations about 0 through
angles that are multiples of 2=q.

3. The subgroup of integer translationsf ,(z) = z+ njn 2 Zgis a Fuchsian group.
The subgroup of all translationsf L(z) = z+ bj b2 Rgis not a Fuchsian group as it
is not discrete.

4. The subgroup = f ,(z)=2"zjn 2 Zgis a Fuchsian group.
5. If is a Fuchsian group and 1< is a subgroup then 1 is a Fuchsian group.

6. One of the most important Fuchsian groups is themodular group PSL(2; Z). This is
the group given by Mebius transformations of H of the form

az+ b
cz+d

(2) = cab;c;d2Z; ad bec=1:

7. Let g2 N. De ne

az+ b
cz+d

9= (2= ja;b;c;d2 Z; ad bc=1; b;care divisible by g

This is called the level g modular group or the congruence subgroup of orden,.

Exercise 12.1
Show that for eachq2 N, 4, as de ned above, is indeed a subgroup of Meki).

Exercise 12.2
Fix k> 0, k 6 1. Consider the subgroup of Meb(H) generated by the Mebius transforma-
tions of H given by

1(2)=z+1; »(2)= kz:

Is this a Fuchsian group? (Hint: consider ," T 2(z).)
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x12.4 A criterion for a subgroup to be a Fuchsian group

Recall that a subset is discrete if every point is isolated. To check that a sulgroup is
discrete, it is su cient to check that the identity is isolat ed.

Proposition 12.4.1
Let be a subgroup ofMeb( H). The following are equivalent:

() is a discrete subgroup ofVieb( H) (i.e. is a Fuchsian group);

(ii) the identity element of s isolated.
Remark. The same statement holds in the case of the Poincae disc maoal D.

Proof.  Clearly (i) implies (ii). The proof of (ii) implies (i) is str aight-forward, but requires
knowledge of concepts from metric spaces. The idea is to shotkat (i) the image of an
isolated point under a continuous map is isolated, and (ii) the map de ned on Meb(H)
by multiplication by a xed element of Meb( H) is continuous. Then if the identity Id is
isolated, by considering the image of Id under multiplication by 2 , we see that s
isolated. As is arbitrary, we are done. 2

x12.5 Orbits

Let be a subgroup of Meb( H).

De nition. Let z2 H. The orbit ( z) of z under s the set of all points of H that we
can reach by applying elements of to z:

(=1t @ 2 ¢

The following result says that for subgroups of isometries bthe hyperbolic plane, dis-
creteness of the group is the same as discreteness of everypibr

Proposition 12.5.1
Let be a subgroup ofMeb( H). Then the following are equivalent:

(i) is a Fuchsian group;
(i) For each z 2 H, the orbit ( z) is a discrete subset oH.

Remark. The same statement holds in the case of the Poincae disc maoal D.

Proof. This is covered in the reading material on limit sets (see Prposition 24.2.4. Al-
ternatively, see x2.2 in Katok. 2

Example. Let = f ] n(2)=2"2z; n2 Zg. Fix z2 H. Then the orbit of z is
(2)=12"zjn2 Zg:

We will show directly that ( z) is a discrete subgroup ofH. To see this, rst observe
that the points 2"z lie on the (Euclidean) straight line through the origin incl ined at angle
arg(z). Fix 2"z and let =2" 1jzj. Itis easy to see thatj2Mz 2"zj wheneverm 6 n.
Hence (z) is discrete.
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Remark. A subgroup of Meb( H) also acts on@. However, the orbit ( z) of a point
z 2 @ under need not be discrete, even if the group itself is discrete. For example,
consider the modular group:

az+ b
cz+d

PSL(2;Z) = (2) = ja;b;c;d2 Z; ad bc=1

This is a Fuchsian group (and therefore discrete). Howeverthe orbit of the point 0 2 @H

under PSL(2;Z) is the setfb=dj ad bc=1g. Itis easy to see that this set is equal to
Q[flg , which is not a discrete subset of@dH (because an irrational point onR can always
be arbitrarily well approximated by rationals).
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13. Fundamental domains

x13.1 Open and closed subsets

We will need to say what it means for a subset oH to be open or closed.

De nition. A subsetY H is said to beopenif for eachy 2 Y there exists" > 0 such
that the open ball B-(y) = fz2 Hjdy(z;y) <" g of radius" and centrey is contained in
Y.

A subsetY H is said to beclosedif its complement HnY is open.

Remark. Recall from the exercises that hyperbolic circles are Eudliean circles (albeit
with di erent radii and centres). Thus to prove a subset Y  H is open it is su cient to
nd a Euclidean open ball around each point that is contained in Y. In particular, the
open subsets oH are the same as the open subsets of the (Euclidean) upper hgitane.

Examples.
1. The subsetfz 2 Hj 0< Re(z) < 1g is open.

2. The subsetfz2 Hj0O Re(z) 1gis closed.

3. The subsetfz2 Hj0O< Re(z) 1g is neither open nor closed.

De nition. Let Y H be a subset. Then theclosure of Y is the smallest closed subset
containing Y. We denote the closure ofY by cI(Y).

For example, the closure offz2 HjO< Re(z) < 1gisfz2 HjO0 Re(z) 1g.

x13.2 Fundamental domains

De nition. Let be a Fuchsian group. A fundamental domain F for is an open subset
of H such that

.S
@ 5 ((F)=H,
(ii) the images (F) are pairwise disjoint; thatis, 1(F)\ 2(F)=;if 1; 22, 16 o.

Remark. Notice that in (i) we have written (cl(F)) (i.e. we rst take the closure, then
apply ). We could instead have written cl( (F)) (i.e. rstapply , now take the closure).
These two sets are equal. This follows from the fact that both and ! are continuous
maps. (See any text on metric spaces for more details.)

Thus F is a fundamental domain if every point lies in the closure of eme image (F) and
if two distinct images do not overlap. We say that the images & F under tessellateH.

67



MATH3/4/62051 13. Fundamental domains

Remark. Some texts require fundamental damains to beclosed If this is the case then
condition (i) is replaced by the assumptionthat  , (F) = H, and condition (ii) requires
the set (int( F)) to be pairwise disjoint (here int( F) denotes theinterior of F, the largest
open set contained insiderF ).

Example. Consider the subgroup of Meb( H) given by integer translations: = f , |
n(z) = z+ n; n 2 Zg. This is a Fuchsian group.
Consider the setF = fz2 Hj 0< Re(z) < 1g. Thisis an open set. Clearly if Reg) = a
then Re( n(z)) = n+ a. Hence

n(F)=fz2Hjn< Re(z)<n +1g

and
n(cl(F)=fz2Hjn Re(z) n+1lg:

S
HenceH = ., n(cl(F)). Itis also clear thatif ,(F)and n(F) intersect, thenn= m.
HenceF is a fundamental domain for . See Figure 13.2.1.

1(F) F 1(F) 2(F)

Re(z)= 1 Re(2)=0 Re(z)=1 Re(z)=2
Figure 13.2.1 : A fundamental domain and tessellation for = f 5 h(z)= z+ ng

Example. Consider the subgroup = f ] n(z) =2"z; n2 Zg of Meb(H). This is a
Fuchsian group.

Let F = fz2 Hj 1< jzj < 29. This is an open set. Clearly, if 1< jzj < 2 then
2" < j n(2)j < 2"*1. Hence

W(F)Y=fz2Hj2"< jzj< 2"g
and
hCl(F)=fz2Hj2" jzj 2"g

S
HenceH = ., n(cl(F)). Itis also clear thatif ,(F)and n(F) intersect, thenn= m.
HenceF is a fundamental domain for . See Figure 13.2.2.

Fundamental domains are not necessarily unique. That is, foa given Fuchsian group
there may be many di erent fundamental domains. For example Figure 13.2.3 gives an
example of a dierent fundamental domain for the Fuchsian group = f 5] n(2) =
z+ n;n 2 Zg. However, we have the following result which (essentially)says that any two
fundamental regions have the same area.
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1(F)

F

1(
(=

4 2 1 0 1 2 4

Figure 13.2.2 : A fundamental domain and tessellation for = f | n(z)=2"zg

1(F) F 1(F) 2(F)

Re(z)= 1 Re(2)=0 Re(z)=1 Re(z)=2 Re(z)=3

Figure 13.2.3 : Another fundamental domain and tessellation for = f ,j n(z)= z+ ng

Proposition 13.2.1
Let F; and F» be two fundamental domains for a Fuchsian group , with Areay(F1) < 1 .
Then Areay(F1) = Areay(F»).

Proof. We sketch the main ideas of the proof. To give a rigorous proofequires technical
properties of area and integration that we choose to ignore.

The boundary @Fof a setF is de ned to be the set cl(F) nint( F), where cl(F) is the
closure of F and int(F) is the interior of F. For the proposition to be true we require the
additional hypothesis that Areay(@1F) = 0 and Areay(@FE) = 0.

First notice that, for i = 1;2, we have that Areaq(cl(F;)) = Area »4(F;) for i =1;2 as
Areay(@F) = 0. Now

0 1

cl(F1) cl(Fp)\ @[ (Fz)A=[ (cl(F)\  (F2):
2 2

As F» is a fundamental domain, the sets clF1)\ (F») are pairwise disjoint. Hence, using
the facts that (i) the area of the union of disjoint sets is the sum of the areas of the sets,
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and (ii) Mebius transformations of H preserve area we have that

X
Areay (cl(F1)) Areay(cl(F1)\  (F2))

2
X

Areay(  Ycl(Fq)) \ Fy)

2
X

Areay( (cl(F1))\ F2):
2

SinceF, is a fundamental domain we have that

(cl(F1)) = H:

Hence
0 1
X [
Areay( (cl(F1))\ F2) Areay @ (cl(Fo) \ FoA = Areay(F2):
2 2

Hence Areai(F1) = Areay(cl(F1))  Areay(F»2). Interchanging F; and F» in the above
gives the reverse inequality. Hence Areg(F1) = Area y(F»). 2

Let be a Fuchsian group and let 1 < be a subgroup of . Then 1 is a discrete
subgroup of the Mebius group Meb(H) and so is itself a Fuchsian group. The following
relates properties of fundamental domains for ; and .

Proposition 13.2.2
Let be a Fuchsian group and suppose that ; is a subgroup of of index n. Let

= 11 120 [ 1n
be a decomposition of into cosets of ;. Let F be a fundamental domain for . Then:
M Fir= «(F)[ 20F)[ [ «(F) isafundamental domain for q;

(ii) if Areay(F) is nite then Areay(F1) = nAreay(F).

Proof. See Theorem 3.1.2 in Katok. Again, as in Proposition 13.2.1in (ii) we need the
additional technical hypothesis that Areay (@B = 0. 2

So far, we do not yet know that there exists a fundamental domén for a given Fuchsian
group. There are several methods of constructing fundameilal domains and we discuss one
such method in the next few lectures.

Exercise 13.1
Figures 13.2.1 and 13.2.2 illustrate two tessellations oH. What do these tessellations look
like in the Poincae disc D?

70



MATH3/4/62051 14. Dirichlet polygons: the construction

14. Dirichlet polygons: the construction

x14.1 Recap

Let be a Fuchsian group. Recall that a Fuchsian group is a disrete subgroup of the
group Meb(H) of all Mebius transformations of H. In Lecture 13, we de ned the notion
of a fundamental domain F. Recall that a subset F H is a fundamental domain if,
essentially, the images (F) of F under the Mebius transformations 2 tessellate (or
tile) the upper half-plane H.

In Lecture 13 we saw some speci ¢ examples of fundamental dasmins. For example, we
saw that the setfz 2 Hj 0< Re(z) < 1gis a fundamental domain for the group of integer
translations f ,(z) = z+ njn 2 Zg. However, we do not yet know that each Fuchsian
group possesses a fundamental domain. The purpose of the nebwo lectures is to give a
method for constructing a fundamental domain for a given Fudisian group.

The fundamental domain that we construct is called aDirichlet polygon. It is worth
remarking that the construction that we give below works in far more general circumstances
than those described here. We also remark that there are ottremethods for constructing
fundamental domains that, in general, give di erent fundamental domains than a Dirichlet
polygon; such an example is the Ford fundamental domain whic is described in Katok's
book.

The construction given below is written in terms of the upper half-plane H. The same
construction works in the Poincae disc D.

x14.2 Convex polygons as intersections of half-planes

In Lecture 7 we de ned a polygon as the region bounded by a nite set of geodesic segments.
It will be useful to slightly modify this de nition.

De nition. Let C be a geodesic ifH. Then C divides H into two components. These
components are callechalf-planes

For example, the imaginary axis determines two half-planes fz 2 H j Re(z) < Og and
fz 2 Hj Re(z) > 0g. The geodesic given by the semi-circle of unit radius centi at
the origin also determines two half-planes (although they m longer look like Euclidean
half-planes): fz2 Hjjzj< 1gandfz2 H jjzj > 1g.

We de ne a convex hyperbolic polygon as follows.

De nition. A convex hyperbolic polygon is the intersection of a nite number of half-
planes.

Exercise 14.1

(Included for completeness only.) Show that a convex hyperblic polygon is an open subset
of H. To do this, rst show that a half-plane is an open set. Then show that the intersection
of a nite number of open sets is open.
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One dierence between this de nition of a hyperbolic polygon and the more naive
de nition given in Lecture 7 is that we now allow for the possibility of an edge of a hyperbolic
polygon to be an arc of the circle at in nity. See Figure 14.21.

(i) (i)

Figure 14.2.1 : A polygon with one edge on the boundary (i) in the upper halfplane, (ii)
in the Poincae disc

x14.3 Perpendicular bisectors

Let z3;z, 2 H. Recall that [z1;2,] is the segment of the unique geodesic froma; to z».
The perpendicular bisector of g;;z;] is de ned to be the unique geodesic perpendicular to
[z1; 22] that passes through the midpoint of [zq; z5].

[21;25]

Z3

Z;
Figure 14.3.2 : The perpendicular bisector of f1; 5]

Proposition 14.3.1
Let z3;2> 2 H. The line determined by the equation

dn(z;z1) = du(z; 22)
is the perpendicular bisector of the line segmen{z; z;].

Proof. By applying a Mebius transformation of H, we can assume that bothz; and z,
lie on the imaginary axis andz; = i. Write z, = ir 2 for somer > 0 and there is no loss in
generality (by applying the Mebius transformation z 7! 1=z if required) that r > 1.

By using Proposition 4.2.1 it follows that the mid-point of [i;ir 2] is at the point ir . It
is clear that the unique geodesic throughir that meets the imaginary axis at right-angles
is given by the semi-circle of radiusr centred at 0.
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Recall from Proposition 5.5.2 that

iz w?

. = + -
coshdy(z;w) = 1 2lmzimw
In our setting this implies that

. . iz ir?j?
jz ij?= Jirz I

This easily simplies to jzj = r, i.e. z lies on the semicircle of radiusr, centred at O. 2

Exercise 14.2
(i) Write z3 = X1+ iy1, Zo = X2 + iy2, 21,22 2 H. Show that the perpendicular bisector
of [z1;z»] can also be written as

fz2 Hjylz zj?=yijz  zjg:

(i) Hence describe the perpendicular bisector of the arc ofjeodesic between 1 +Rand
(6 +8i)=5.

x14.4 Constructing Dirichlet polygons

Let be a Fuchsian group. We are now in a position to describe fow to construct a
Dirichlet polygon for . Before we can do that, we need to state the following technical
result:

Lemma 14.4.1
Let be a Fuchsian group. Then there exists a pointp 2 H that is not xed by any
non-trivial element of . (Thatis, (p)6 pforall 2 nfldg.)

Proof. This is covered in the reading material on limit sets. See als Lemma 2.2.5 in
Katok. 2

Let be aFuchsian group andlet p2 H be apointsuchthat (p) 6 pforall 2 nfidg.
Let be an element of and suppose that is not the identity. The set

fz2 Hjdu(z;p) <du(z; (p)g

consists of all pointsz 2 H that are closer to p than to (p).
We de ne the Dirichlet region to be:

D)= fz2 Hjdy(z;p) <dn(z; (p) forall 2 nfldgg

Thus the Dirichlet region is the set of all points z that are closer to p than to any other
point in the orbit ( p)=f (p)j 2 gofpunder .
To better describe the Dirichlet region consider the followng procedure:

(i) Choosep2 H suchthat (p)6 pforall 2 nfldg.
(i) Foragiven 2 nfldg construct the geodesic segmentpf (p)].

(iif) Take Ly( ) to be the perpendicular bisector of p; (p)].
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(iv) Let Hy( ) be the half-plane determined byL ,( ) that contains p. (Thus by Proposi-
tion 14.3.1 Hp( ) consists of all pointsz 2 H that are closer top thanto  (p).)

(v) Then

\
D(p) = Hp( ):
2 nfldg

Theorem 14.4.2

Let be a Fuchsian group and letp be a point not xed by any non-trivial element of
Then the Dirichlet region D (p) is a fundamental domain for . Moreover, if Areay(D (p)) <
1 then D(p) is a convex hyperbolic polygon (in the sense 0k14.2); in particular it has
nitely many edges.

Remarks.

1. There are many other hypotheses that ensure thab (p) is a convex hyperbolic polygon
with nitely many edges; requiring D(p) to have nite hyperbolic area is probably
the simplest. Fuchsian groups that have a convex hyperboligolygon with nitely
many edges as a Dirichlet region are calledjeometrically nite .

2. If D(p) has nitely many edges then we refer toD (p) as a Dirichlet polygon. Notice
that some of these edges may be arcs @M. If there are nitely many edges then
there are also nitely many vertices (some of which may be on@H).

3. The Dirichlet polygon D (p) depends onp. If we choose a di erent point p, then we
may obtain a di erent polygon with di erent properties, suc h as the number of edges.
Given a Fuchsian group , Beardon (Theorem 9.4.5) describeghe properties that a
Dirichlet polygon D (p) will have for a typical point p.

Proof. There are two things to show here: namely, thatD(p) is a convex hyperbolic
polygon, and that D(p) is a fundamental domain. Both of these facts rely on techniel
properties of Fuchsian groups that we have chosen to avoid,ral we do not go into them
here. See Theorem 6.17 in Anderson axx2,3 in Katok. 2
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15. Dirichlet polygons: examples

x15.1 Recap

In Lecture 14 we saw how to construct a Dirichlet polygon for agiven Fuchsian group. Let
us recall the procedure:

(i) Choosep?2 H suchthat (p)6 pforal 2 nfidg.

(i) Let 2 nfidg. Construct the geodesic segmentd; (p)]-

(i) Let Lp( ) denote the perpendicular bisector of p; (p)].

(iv) Let Hp( ) denote the half-plane determined byL ( ) that contains p.

(V) Let \

D(p) = Hp( ):
2 nfidg

x15.2 The group of all integer translations

Proposition 15.2.1
Let be the Fuchsian groupf nj n(z)= z+ n; n 2 Zg. Then

D(i)= fz2 Hj 1=2< Re(z) < 1=2g:

Proof. Letp=1i. Thenclearly ,(p)= i+ n 6 psothatpis not xed by any non-trivial

element of . As ,(p) = i + n, itis clear that the perpendicular bisector of [p; (p)] is
the vertical straight line with real part n=2. Hence

fz2HjRe(z) <n=2g ifn>0;

Hol n) = ¢, 2 HjRe(z) >n=2g ifn< 0:

Hence

\
D(p) = Hp( )
2 nfldg

Hp( 1)\ Hp( 1)
fz2Hj 1=2< Re(z) < 1=2g:
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Lp( n)

Hp( n)
[P; n(p]

n=2

Figure 15.2.1 : The half-plane determined by the perpendicular bisector 6 the geodesic
segment p;p+ nJ

x15.3  Groups of rotations

Proposition 15.3.1
Fix n> 0 and let be the discrete group of Mebius transformations of D given by =

frj k(@)= €% z: k=0;1::::n 1g. Let p=1=2. Then
D(pp=fz2Dj =n< argz< =ng:

Proof.  Clearly the only xed pointof p is the origin, so that we may take anyp 2 Dnf0g.
Let us take p=1=2. Then (p) = (€2 )=2. The geodesic segmentp[ «(p)] is an arc
of semi-circle and it is easy to see that the perpendicular lsiector L( ) of this arc is the

Figure 15.3.2 : The half-plane determined by the perpendicular bisector 6 the geodesic
segment p; € " p]

diameter of D inclined at angle (2k=n)=2 = k=n. See Figure 15.3.2. Hencéiy( k) is a
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sector of the unit disc bounded by the diameterL( ). Taking the intersection, we see
that

D(pp=fz2Dj =n< argz< =ng:

The tessellation of the Poincae disc in the casen = 7 is illustrated in Figure 15.3.3. 2

Figure 15.3.3 : The tessellation of D in the case whenn =7

x15.4 The modular group

Proposition 15.4.1
A Dirichlet polygon for the modular group PSL(2;Z) is given by:

D(p)=fz2Hjjzj> 1 1=2< Re(z) < 1=2g:

(Here p= ki forany k> 1))

D (p)

Figure 15.4.4 : A Dirichlet polygon for PSL(2;Z)

Proof. Itis easy to check that if p= ki for k > 1 then pis not xed under any non-trivial
element of PSL(2 Z).
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Consider the Mebius transformations of H given by 1(z) = z+1 and ,(z) = 1=z
Clearly these lie in PSL(Z Z).

The perpendicular bisector of p; 1(p)] =[p;p+ 1] is easily seen to be the vertical line
Re(z) = 1=2. HenceHp( 1) = fz 2 H j Re(z) < 1=29. Similarly, Hp( 11) =fz2Hj
Re(z) > 1=2g.

The geodesic segmenty, »(p)] is the arc of imaginary axis betweenki and i=k. By using
Proposition 4.2.1 it follows that the perpendicular bisector of [p; 2(p)] is the semi-circle of
radius 1 centred at the origin. HenceHp( 2) = fz2 Hjjzj > 1g.

Let F = Hp( 1)\ Hp( ;1)\ Hp( 2). Then

\ \
D(p) = Hp( ) Hp( )= F:
2PSL(2;Z)nfldg T

It remains to show that this inclusion is an equality, i.e. D(p) = F. Suppose for a
contradiction that this is not the case, i.e. D(p) F but D(p) 6 F. ThenasD(p) is a
fundamental domain, there exists a pointzg 2 D(p) F and 2 PSL(2;Z) nfldg such
that (zp) 2 F. We show that this can not happen. To see this, write

az+ b
cz+d

(2) =
wherea;b;c;d2 Z andad bc=1. Then
jczo + dj* = ¢jzoj? + 2Re(zo)cd+ d? > c?+ d? | cdi = (jg j dj)?+ jcd;

sincejzpj > 1 and Re(zg) > 1=2. This lower bound is a non-negative integer. Moreover,
it is non-zero, for it were zero then bothc =0 and d = 0 which contradicts the fact that
ad bc=1. Thus the lower bound is at least 1, so thatjczy + dj2 > 1. Hence

Im zg

m < Im zp:

Im( (20)) =

Repeating the above argument withzg replaced by (zo) and replaced by ! we see that
Im zp < Im( (20)), a contradiction. 2

Exercise 15.1
Let = f ] n(z)=2"z; n2 Zg. This is a Fuchsian group. Choose a suitablep 2 H and
construct a Dirichlet polygon D (p).
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2 1(F)

1(F)

i(F)

-1 0

Figure 15.4.5 : The tessellation of H determined by the Dirichlet polygon given in Propo-

sition 15.4.1 for the modular group
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16. Side-pairing transformations

x16.1 Side-pairing transformations

Let D be a hyperbolic polygon. Asides H of D is an edge ofD in H equipped with an
orientation. That is, a side of D is an edge which starts at one vertex and ends at another.

Let be a Fuchsian group and let D (p) be a Dirichlet polygon for . We assume that
D(p) has nitely many sides. Let s be a side ofD. Suppose that for some 2 nfldg, we
have that (s) is also a side ofD(p). Note that 12 nfldg maps the side (s) back to
the sides.

De nition. We say that the sidess and (s) are paired and call a side-pairing trans-
formation. (As we shall see, it can happen thats and (s) are the same side, albeit with
opposing orientations; in this case, we say thas is paired with itself.)

Given a sides of a Dirichlet polygon D (p), we can explicitly nd a side-pairing transfor-
mation associated to it. By the way in which D (p) is constructed, we see thats is contained
in the perpendicular bisector L ,( 1) of the geodesic segmentg], g(p)], for someg 2 nflidg.
One can show that the Mebius transformation = g ! mapss to another side of D(p).
See Figure 16.1.1. We often denote by the side-pairing transformation associated to the
sides.

D(p) =)

a(p)

Figure 16.1.1 : The transformation = g ! is associated to the sides of D (p)

x16.2 Examples of side-pairing transformations

Let us calculate some examples of side-pairing transformains.

Example. Let = f ] n(z)= z+ n;n 2 Zg be the Fuchsian group of integer transla-
tions. We have seen thatifp= i thenD(p)= fz2 Hj 1=2< Re(z) < 1=2gis a Dirichlet
polygon for .

Let s be the sides=fz2 HjRe(z) = 1=2g9. Then s is the perpendicular bisector of
[p:p 1] =[p;9(p)]. Hence s(z) = g Y(z) = z+1 sothat (s)= s°wheres®is the side
= fz2 HjRe(z) =1=2g.

80



MATH3/4/62051 16. Side-pairing transformations

D(p)

S s(s) = s?

Figure 16.2.2 : A side-pairing map for = f ,j n(z)= z+ ng

Example. Consider the modular group = PSL(2 ;Z). We have seen that a fundamental
domain for is given by the set D(p) = fz2 Hj 1=2< Re(z) < 1=2; jzj > 19, where
p = ki for any k > 1. This polygon has three sides:

sg = fz2HjRe(@z)= 1=2; jzj> 1g
s = fz2HjRe(@z)=1=2; jzj> 1g
s3 = fz2Hjjzj=1; 1=2< Re(z) < 1=2¢:

As in the above example, it is clear that s,(z) = z+ 1 so that 5, pairs s; with s;.
The side pairing transformation associated to the sides; is ,(z) = z 1. Considerss.

This is the perpendicular bisector of p; 1=p| = [p; ,}(p)] where ¢,(z) = 1=z Hence
ss(Z) = 1=z is a side-pairing transformation and pairssz with itself.
S1
S1 S2
S3

Figure 16.2.3 : Side-pairing transformations for the modular group: s; is paired with s;
and sz is paired with itself

Exercise 16.1
Take = f ] n(z) =2"z;n 2 Zg. Calculate the side-pairing transformations for the
Dirichlet polygon calculated in Exercise 15.1.
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x16.3 Representing the side-pairing transformations in a di agram

Often it is convenient to indicate which sides of D (p) are paired and how the side-pairing
transformations act by recording the information in a diagram such as in Figure 16.3.4.
Here, the sides with an equal number of arrowheads are pairednd the pairing preserves

s(s)

Figure 16.3.4 : The sides®is mapped to the sides by s. The sides with an equal number
of arrowheads are paired

the direction of the arrows denoting the orientation of the ddes.
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17. Elliptic cycles

x17.1  Elliptic cycles

From now on we shall switch automatically between the upper half-plane H and the Poincae
disc, depending on which model is most appropriate to use in @iven context. Often we
shall refer to H, but draw pictures in D; we can do this as the map constructed in Lecture 6
allows us to switch between the two at will.

Let be a Fuchsian group and let D = D(p) be a Dirichlet polygon for . We assume
that all the vertices of D(p) lie inside H (later we shall see many examples where this
happens). In Lecture 16 we saw how to associate to each sideof D(p) a side-pairing
transformation 52 nfldg that pairs s with another side ¢(s) of D (p).

Recall that we indicate which sides ofD are paired and how the side-pairing transfor-
mations act by recording the information in a diagram as follows: the sides with an equal
number of arrowheads are paired and the pairing preserves th direction of the arrows
denoting the orientation of the sides.

Notice that each vertex v of D is mapped to another vertex ofD under a side-pairing
transformation associated to a side with end point atv.

Each vertex v of D has two sidess and s of D with end points at v. Let the pair (v;s)
denote a vertexv of D and a sides of D with an endpoint at v. We denote by (v;s) the
pair comprising of the vertex v and the other side s that ends at v.

Consider the following procedure:

() Let v = vy be a vertex of D and let sp be a side with an endpoint atvy. Let 1 be
the side-pairing transformation associated to the sidesp. Thus 1 mapssp to another
sides; of D.

(i) Let s;1 = 1(so) and let v1 = 1(vg). This gives a new pair (v1;S1).

(i) Now consider the pair (v1;s1). This is the pair consisting of the vertex v, and the
side s; (i.e. the side of D other than s; with an endpoint at v;).

(iv) Let » be the side-pairing transformation associated to the side s;. Then »( s1)is
a sides; of D and (v1) = vy, a vertex of D.

(v) Repeat the above inductively. See Figure 17.1.1.
Thus we obtain a sequence of pairs of vertices and sides:

Vo |1 Vi Vi
So ' St S1
G

S2
K Vi ! Vi
Si Si
!'+1 Vi+1 |
Sj+1
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S1

Vi

S1

m

Vo

Figure 17.1.1 : The pair (Vvp; Sp) is mapped to (v1; s1), which is mapped to (v1; s1), which
is mapped to (v2;sp), etc

As there are only nitely many pairs (v;s), this process of applying a side-pairing transfor-
mation followed by applying must eventually return to the initial pair ( vo;Sp). Let n be
the least integern > 0 for which (v,; sp) = ( Vo; So).

De nition. The sequence of vertice€E = vg ! vy ! ! Vy 1 is called an elliptic
cycle. The transformation , , 1 2 1 is called anelliptic cycle transformation.

As there are only nitely many pairs of vertices and sides, wesee that there are only nitely
many elliptic cycles and elliptic cycle transformations.

Example. Consider the polygon in Figure 17.1.2. Notice that we can lakl the side-
pairing transformations in any way we choose. Thus in Figurel7.1.2 the map 2 is an
isometry that maps the side ss = AF to the side s, = DE. Notice the orientation:
maps the vertex A to the vertex D, and the vertex F to the vertex E. We follow the

F E Sy D
S5

S2

Figure 17.1.2 : An example of a polygon with sides, vertices and side-paing transforma-
tions labelled

procedure described above:
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. E | E
! o« !
4 B, B
! o ! s
& D , D
! o ! s
b A, A
! o | s

Thus we have the elliptic cycleA'! F ! E ! B ! D with associated elliptic cycle
transformation ,* ;% ;1 , ;. However, the vertex C is not part of this elliptic cycle and
so must be part of another elliptic cycle:

C | 3 C C
S3 ' S2 S3

Thus we have another elliptic cycleC with associated elliptic cycle transformation 3.

De nition. Let v be a vertex of the hyperbolic polygonD. We denote the elliptic cycle
transformation associated to the vertexv and the sides by ..

Remarks.

1. Suppose instead that we had started at¥; s) instead of (v;s). The procedure above

gives an elliptic cycle transformation . s. One can easily check that ; s = 4.

2. Suppose instead that we had started at {;; s;) instead of (vo;Sp). Then we would
have obtained the elliptic cycle transformation

viisi — i1 1n i+2 i+l

i.e. a cyclic permutation of the maps involved in de ning the elliptic cycle transfor-
mation associated to {/p; Sp). Moreover, it is easy to see that

viis = (i 1) voiso( i 1) !

so that ;s and s, are conjugate Mebius transformations.

Exercise 17.1
Convince yourself that the above two claims are true.

Let v be a vertex of D with associated elliptic cycle transformation . Then
is a Mebius transformation xing the vertex v. In Lecture 9 we saw that if a Mebius
transformation has a xed point in H then it must be either elliptic or the identity. Thus
each elliptic cycle transformation is either an elliptic Mebius transformation or the identity.

De nition. If an elliptic cycle transformation is the identity then we c all the elliptic cycle
an accidental cycle
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x17.2 The order of an elliptic cycle

De nition. Let 2 Meb(H) be a Mebius transformation. We say that has nite order
if there exists an integerm > 0 such that ™ =1d. We call the least such integer m > 0
the order of

Example.  Working in D, the rotation (z) = €' z has nite order if and only if = p=q
a rational.

More generally, if is conjugate to a rotation through a rational multiple of 2 then
has nite order. Indeed, this is the only way in which elements of nite order can arise,
Thus, if has nite order then  must be elliptic. For elements of a Fuchsian group, the
converse is also true: elliptic elements must also be of ni¢ order (and therefore conjugate

to a rotation through a rational multiple of 2 ).

Proposition 17.2.1
Let beaFuchsian groupandlet 2 be an elliptic element. Then there exists an integer
m 1suchthat ™ =Id.

Proof (sketch). Recall that an elliptic Mebius transformation is conjugate to a ro-
tation, say through angle 2 where 2 [0;1]. Consider the elements " 2 ; these are
conjugate to rotations through angle 2n  mod 1 (that is, we take n and ignore the integer
part). The proposition follows from the following (fairly e asily proved) fact: the sequence
n mod 1 is a discrete subset of [AL] if and only if is rational, say = k=m. As is a
Fuchsian group, the subgroupf " jn 2 Zgis also a Fuchsian group, and therefore discrete.
Hence is conjugate to a rotation by 2k =m . Hence ™ is conjugate to a rotation through
2k ,i.e. ™M is the identity. 2

Let be a Fuchsian group with Dirichlet polygon D. Let v be a vertex of D with elliptic
cycle transformation .s 2 . Then by Proposition 17.2.1, there exists an integerm 1
such that ['s =Id. The order of s is the least such integerm.

Exercise 17.2
(i) Show that ,:s,; v:s; have the same order.

(i) Show thatif has orderm then so does 1.

It follows from Exercise 17.2 that the order does not depend o which vertex we choose in
an elliptic cycle, nor does it depend on whether we start at ¢;s) or (v; s). Hence for an
elliptic cycle E we write mg for the order of . wherev is some vertex on the elliptic cycle
E and s is a side with an endpoint atv. We call mg the order of E.

x17.3 Angle sum

Let \ v denote the internal angle ofD at the vertex v. Consider the elliptic cycle E = vq !
vy ! ! vy 1 of the vertex v = vg. We de ne the angle sumto be

sum(E) = \ vp + +\ vy 1

Clearly, the angle sum of an elliptic cycle does not depend onvhich vertex we start at.
Hence we can write sumE) for the angle sum along an elliptic cycle.
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Proposition 17.3.1
Let be a Fuchsian group with Dirichlet polygon D with all vertices in H and let E be an
elliptic cycle. Then there exists an integermg 1 such that

megsum(g) =2 :
Moreover, mg is the order of E.
Proof. See Katok. 2

Remark. Recall that we say that an elliptic cycle E is accidental if the associated elliptic
cycle transformation is the identity. Clearly the identity has order 1. Hence ifE is an
accidental cycle then it has ordermg = 1 and sum(E) = 2
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18. Generators and relations

x18.1 Generators and relations

Generators and relations provide a useful and widespread ntieod for describing a group.
Although generators and relations can be set up formally, werefer to take a more heuristic
approach here.

x18.2 Generators of a group

De nition. Let be a group. We say that a subset S = f 1;:::; is a set of
generatorsif every element of can be written as a composition of elemets from S and
their inverses. We write = ISi.

Examples.

1. Consider the additive groupZ. Then Z is generated by the element 1: then every
positive elementn > 0 of Z can be written as 1+ +1 (n times), and every negative
element n;n> 0 of Z can be written ( 1)+ +( 1) (n times).

2. The additive group Z2 = f(n;m) j n;m 2 Zg is generated byf (1;0); (0; 1)g.

3. The multiplicative group of pth roots of unity f1;!;:::;! P 1g, 1 = €=P  is gener-
ated by !.

Remark. A given group will, in general, have many di erent generati ng sets. For
example, the setf2; 3g generates the additive group of integers. (To see this, notéhat
1=3 2hencen=3+ +3+( 2)+ +( 2)where there aren 3s andn 2s.)

x18.3 The side-pairing transformations generate a Fuchsian group

Let be a Fuchsian group and let D(p) be a Dirichlet polygon for . In Lecture 17 we
saw how to associate toD(p) a set of side-pairing transformations. The importance of
side-pairing transformations comes from the following reslt.

Theorem 18.3.1
Let be a Fuchsian group. Suppose thaD (p) is a Dirichlet polygon with Areay (D (p)) <
1 . Then the set of side-pairing transformations ofD (p) generate .

Proof. See Katok's book. 2

Example.  Consider the modular group = PSL(2 ;Z). We have seen that a fundamental
domain for is given by the set D(p) = fz2 Hj 1=2< Re(z) < 1=2; jzj > 19, where
p = ki for any k > 1. We saw in Lecture 17 that the side-pairing transformatiors are
z7'z+1l(anditsinverse z7! z 1)andz 7! 1=z It follows from Theorem 18.3.1 that
the modular group PSL(2; Z) is generated by the transformationsz 7! z+1and z 7! 1=z
We write PSL(2;Z2)= e 7' z+1;z7! 1=z.
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x18.4 Groups abstractly de ned in terms of generators and rel ations

In the above, we started with a group and looked for generatos. Alternatively, one could
start with an abstract set of generators and a set of relatiorships between them, and use
this information to describe a group.

x18.5 Free groups

Let S be a nite set of k symbols. Ifa2 S is a symbol then we introduce another symbol
a ! and denote the set of such symbols by 1.

We look at all nite concatenations of symbols chosen fromS[ S 1, subject to the
condition that concatenations of the form aa ! and a 'a are removed. Such a nite con-
catenation of n symbols is called aword of length n. Let

Wh

fall words of length ng
= fwh=a ajg2S[Sta 16 3 g:

We let e denote the empty word (the word consisting of no symbols) andfor consistency,
let Wo = feg

If w, and wy, are words then we can form a new wordv,wy, of length at most n + m
by concatenation: ifw, = a3 a, andwy = by by then

WnWm = @1 anby  bin:

If by = a, ! then we delete the terma,b;, from this product (and then we have to see if
b= a, 11; if so, then we delete the terma, ibp, etc).

De nition. Let S be a nite set of k elements. We de ne

[
Fk = Wh;

n O

the collection of all nite words (subject to the condition t hat symbol a never follows or is
followed by a 1), to be the free group onk generators

Let us check that this is a group where the group operation is oncatenation of words.

(i) The group operation is well-de ned: as we saw above, the ancatenation of two words
is another word.

(i) Concatenation is associative (intuitively this is clear, but it is suprisingly di cult to
prove rigorously).

(iv) Existence of an identity: the empty word e (the word consisting of no symbols) is the
identity element; if w=a; ay 2F, then we= ew= w.

(i) Existence of inverses: ifw = a;  a, is a word then the wordw * = a,* a;tis
suchthatww 1= w lw=e
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x18.6 Generators and relations

We call F¢ afree group because the group product is free: there is no cancetlan between
any of the symbols (other than the necessary condition thataa ' = a 'a = e for each
symbol a2 S). We can obtain a wide range of groups by introducing relatios. A relation
is a word that we declare to be equal to the identity. When writing a group element as a
concatenation of symbols then we are allowed to cancel any oarrences of the relations.

= hyg;iiniag jwr=ii= wy = el (18.6.1)

to be the set of all words of symbols fromS[ S 1, subject to the conditions that (i) any
subwords of the formaa ! or a 'a are deleted, and (ii) any occurrences of the subwords

It is an important and interesting question to ask when a given group can be written
in the above form.

De nition. We say that a group is nitely presented if it can be written in the above
form, with nitely many generators and nitely many relatio ns. We call an expression of
the form (18.6.1) a presentation of .

Examples.
(i) Trivially, the free group on k generators is nitely presented (there are no relations).

(i) Let | = 7P Thegroup = fL!;! 2::::;1P 1gof p roots of unity is nitely
presented. Using the group isomorphism 7! a, we can write it in the form

hajaP = ei:

(iii) The (additive) group Z of integers is nitely presented. Indeed, it is the free groyp
on 1 generator:
hai = fa" jn 2 Zg:

Notice that a"*™ = a"a™, so that hai is isomorphic to Z under the isomorphism
a" 7! n.

(iv) The (additive, abelian) group Z? = f(n;m) jn;m 2 Zgis nitely presented. This is
because it is isomarphic to

= ha;bja b lab= ei:
If we take a word in the free groupha; b on 2 generators, then it will be of the form

altpMighz g gn:
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In particular, the free group ha; b is not abelian becauseab& ba However, adding
the relation a b laballows us to make the group abelian. To see this, note that

baa b ab
= blaa )b ab
= beblab

= bblab

= ab:

ba= bae

Thus, in the group ha;bj a b 'ab= e we can use the relationa b *abto write

the word

amltgnig"z gvpm:
as

ar11+ +nkbml+ +myg.
Hence

he;bja b 'ab= e = fa"" jn;m 2 Zg
which, using the group isomorphism a;m) 7! a"", is seen to be isomorphic taz?.

(v) Consider the group
ha;bja*= ¥ =(ab? = ei:

One can easily check that there are exactly 8 elements in thigroup, namely:
e;a;a&;a’; b;ab; &b; &b:

This is the symmetry group of a square (it is also called the diedral group). The
elementa corresponds to an anti-clockwise rotation through a right-angle; the element
b corresponds to re ection in a diagonal.

(vi) We shall see in Lecture 19 that the group
ha;bja’=(ab)= e

is isomorphic to the modular group PSL(2 Z). The symbol a corresponds to the
Mebius transformation z 7! 1=z, the symbol b corresponds to the Mebius transfor-
mation z 7! z + 1.

Exercise 18.1
Check the assertion in example (v) above, i.e. show that if = ha;bja*= ? = (ab? = e
then contains exactly 8 elements.

In the above, the group in example (v) is nite and one can eady write down all of
the elements in the group. However, the groupta;bj a®> = b® = (ab)? = e has 60 elements
and it is not at all easy to write down all 60 elements. More gerrally, there are many
important and open questions about writing a group in terms d a nite set of generators
and relations. For example:

(i) Let be a countable group (that is, a group with countably many elements). Is it
possible to decide if is nitely presented?
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(i) Suppose that is nitely presented. Is it possible to de cide if is a nite group?

(i) Given two sets of generators and relations, is it posdble to decide if the two groups
are isomorphic?

(iv) Suppose that is nitely presented and H is a subgroup of . When is it true that
H is nitely presented?

Questions like these are typically extremely hard to answerand require techniques from
logic and computer science to be able to answer; often the angr is that the problem is
“undecidable'!
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19. Poincae's Theorem: the case of no boundary vertices

x19.1 Poincae's Theorem

In Lectures 14{16 we started with a Fuchsian group and then castructed a Dirichlet
polygon and a set of side-pairing transformations. Here wetady the reverse. Namely, we
start with a convex hyperbolic polygon and a set of side-paiing transformations and ask:
when do these side-pairing transformations generate a Fudian group? In general, the
group generated will not be discrete and so will not be a Fuchan group. However, under
natural conditions, the group will be discrete. This is Poincae's theorem.

Let D be a convex hyperbolic polygon. In this lecture we shall assue that all the
vertices of D are in H, that is, there are no vertices on the boundary@. We assume that
D is equipped with a set of side-pairing transformations. Thd is, to each sides, we have
a Mebius transformation ¢ associated tos such that s(s) = s® another side of D. We
will also require the isometry ¢ to act in such a way that, locally, the half-plane bounded
by s containing D is mapped by s to the half-plane bounded by s(s) but opposite D. In
particular, s cannot be the identity.

We follow the procedure in Lecture 17 to construct elliptic ¢ycles, namely:

() Let v = vy be a vertex of D and let sp be a side with an endpoint atvy. Let 1 be
the side-pairing transformation associated to the sidesp. Thus 1 mapssp to another
sides; of D.

(i) Let s31 = 1(so) and let v1 = 1(vg). This gives a new pair (v1;S1).

(iii) Now consider the pair (vi;s1). This is the pair consisting of the vertex v; and the
side s; (i.e. the side of D other than s; with an endpoint of v;.

(iv) Let 5 be the side-pairing transformation associated to the side s;. Then »( s1) is
a sides, of D and »(vi) = vy, a vertex of D.

(v) Repeat the above inductively.

Thus we obtain a sequence of pairs of vertices and sides:

Vo |1 Vi Vi
So ' S1 S1
2 V2.

! 5
K Vi | Vi

Si Si
i+ Vi)
f Sie1 I

Again, as there are only nitely many pairs (v;s), this process of applying a side-pairing
transformation followed by applying must eventually return to the initial pair ( vo; So).
Let n be the least integern > 0 for which (vn; sn) = ( Vo; So)-
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De nition. The sequence of verticeE = vp ! vy ! ! Vh 1 is called an elliptic
cycle. The transformation , , 1 2 1 Is called anelliptic cycle transformation.

Again, as there are only nitely many pairs of vertices and sides, we see that there are only
nitely many elliptic cycles and elliptic cycle transforma tions.

De nition. Let v be a vertex of the hyperbolic polygonD and let s be a side ofD with
an end-point at v. We denote the elliptic cycle transformation associated tothe pair (v;s)

by vs.

De nition. Let \ v denote the internal angle of D at the vertex v. Consider the elliptic
cycleE=vp! vp! ! vy 1 of the vertex v = vo. We de ne the angle sumto be

sum(E) = \ vo + +\vp 1

De nition. We say that an elliptic cycle E satis es the elliptic cycle condition if there
exists an integerm 1, depending onE such that

msum(E) =2

Remark. Observe that if one vertex on a vertex cycle satis es the eliptic cycle condition,
then so does any other vertex on that vertex cycle. Thus it males sense to say that an
elliptic cycle satis es the elliptic cycle condition.

We can now state Poincae's Theorem. Put simply, it says that if each elliptic cycle
satis es the elliptic cycle condition then the side-pairing transformations generate a Fuch-
sian group. Moreover, it also tells us how to write the group n terms of generators and
relations.

Theorem 19.1.1 (Poincae's Theorem)

Let D be a convex hyperbolic polygon with nitely many sides. Suppose that all vertices lie
inside H and that D is equipped with a collection G of side-pairing Mebius transformations.
Suppose that no side oD is paired with itself.

satis es the elliptic cycle condition: for each § there exists an integerm; 1 such that
mj; sum(g) =2 :
Then:
(i) The subgroup = hGigenerated byG is a Fuchsian group;
(i) The Fuchsian group hasD as a fundamental domain.

(i) The Fuchsian group can be written in terms of generators and relations as follows.
For each elliptic cycle 5, choose a corresponding elliptic cycle transformation; = ;s
(for some vertex v on the elliptic cycle E). Then is isomorphic to the group with

generators s 2 G (i.e. we take G to be a set of symbols), and relations jm’ :

=h52ij‘1= ;ﬂz: = " =ei:
Proof. See Katok or Beardon. 2
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Remark. The relations in (iii) appear to depend on which pair (v; s) on the elliptic cycle
E is used to de ne . In fact, the relation jmj is independent of the choice of ¢;s). This
follows from Exercise 17.1: ifv®is another vertex on the same elliptic cycle as/ then 0.0
is conjugate to either s or .2.
Remark. The hypothesis that D does not have a side that is paired with itself is not a
real restriction: if D has a side that is paired with itself then we can introduce anther
vertex on the mid-point of that side, thus dividing the side into two smaller sides which are
then paired with each other.
More speci cally, suppose thats is a side with side-pairing transformation ¢ that pairs

s with itself. Suppose that s has end-points at the verticesvp and v;. Introduce a new vertex
v, at the mid-point of [ vg; v1]. Notice that ¢(v2) = v2. We must have that ¢(vp) = v; and

s(V1) = vo (for otherwise s would x three pointsin H and hence would be the identity, by
Corollary 9.1.2). Let s; be the side {p; v2] and let s, be the side {/»; v1]. Then s(s1) = s>
and s(sp) = s;. Hence ¢ pairs the sidess; and s,. Notice that the internal angle at the
vertex vy is equal to . See Figure 19.1.1.

Vo

Vo Vi

Figure 19.1.1 : The sides is paired with itself; by splitting it in half, we have two dis tinct
sides that are paired

Exercise 19.1

Take a hyperbolic quadrilateral such that each pair of oppofg sides have the same length.
De ne two side-pairing transformation ; » that pair each pair of opposite sides. See
Figure 19.1.2. Show that there is only one elliptic cycle anddetermine the associated
elliptic cycle transformation. When do ; and » generate a Fuchsian group?

Figure 19.1.2 : A hyperbolic quadrilateral with opposite sides paired
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x19.2 An important example: a hyperbolic octagon

The following, as we shall see, is an important example of Pacae's Theorem.
From Exercise 7.3 we know that there exists a regular hyperblic octagon with each
internal angle equal to =4.

Figure 19.2.3 : A regular hyperbolic octagon with internal angles =4 and side-pairings
indicated

Vi 1 Va o \Z
S1 S3 S4
|2 Vs V3
! s ! S5
1
i V2o, V2
! ) ! S
1
12 Vs, Vs
! S S
! s7 ! S
|4 vz V7
! S ! s7
1
K Ve Ve
! S ! S
1
! Sg ! s,

Thus there is just one elliptic cycle:

E=vi! vg! v3! wvo! wvg! vg! vy! v
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with associated elliptic cycle transformation:

As the internal angle at each vertex is = 4, the angle sum is
8—-=2:
4
Hence the elliptic cycle condition holds (with mg = 1). Thus by Poincae's Theorem, the
Moreover, we can write this group in terms of generators and elations as follows:

e 101 .
ha, 20 30 4] 47 37 432 17 2 1= €.
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20. Poincae's Theorem: the case of boundary vertices

x20.1 Recap

In Lecture 19 we studied groups generated by side-pairing insformations de ned on a
hyperbolic polygon D with no vertices on the boundary. Here we consider what happes if
the hyperbolic polygon has vertices on the boundary@.

x20.2 Poincae's Theorem in the case of boundary vertices

Recall that a convex hyperbolic polygon can be described ashe intersection of a nite
number of half-planes and that this de nition allows the possibility that the polygon has
an edge lying on the boundary. (Such edges are callefilee edgeg We will assume that
this doesnot happen, i.e. all the edges oD are arcs of geodesics. See Figure 20.2.1.

0] (ii)

Figure 20.2.1 : (i) A polygon in D with no free edges, (ii) a polygon inD with a free edge

Let D be a convex hyperbolic polygon with no free edges and suppotigat each sides of
D is equipped with a side-pairing transformation s. We will also require the isometry s to
act in such a way that, locally, the half-plane bounded bys containing D is mapped by ¢
to the half-plane bounded by <(s) but opposite D. In particular, ¢ cannot be the identity.
Notice that as Mebius transformations of H act on @1 and indeed map @A to itself, each
side-pairing transformation maps a boundary vertex to anoher boundary vertex.

Let v = vp be a boundary vertex of D and let s = sy be a side with an end-point at vp.
Then we can repeat the procedure described in Lecture 19 (ugj the same notation) starting
at the pair (Vvp; Sg) to obtain a nite sequence of boundary verticesP = vq ! ! Vn 1
and an associated Mebius transformation s = 1.

De nition. Let v = vp be a boundary vertex of D and let s = sy be a side with an
end-point at v. We call P = vp ! ! Vy 1 a parabolic cycle with associated parabolic
cycle transformation s = 1.

As there are only nitely many vertices and sides, there are &most nitely many parabolic
cycles and parabolic cycle transformations.
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Example. Consider the polygon described in Figure 20.2.2 with the sid-pairings indi-
cated. Then following the procedure as described in Lecturd9 starting at the pair (A;s1)

Figure 20.2.2 : A polygon with 2 boundary vertices and with side-pairings indicated

we have:
A |1 D | D
S1 ' S3 Sy
2 ! A | A
! 55 s

Hence we have a parabolic cyclA ! D with associated parabolic cycle transformation
2 ! 1
There is also an elliptic cycle:

B 3 F o, F
Sy ' Sy Se
|2 E | E
! st S
@ ! C | C
! s S
ll ! B B
! 5 | s

Hence we have the elliptic cycleB! F! E ! C with associated elliptic cycle transfor-
; 11
Remarks.

1. Suppose instead that we had started at y; s) instead of (v;s). Then we would have

obtained the parabolic cycle transformation V;Sl.
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2. Suppose instead that we had started at §;;s;) instead of (vp;Sp). Then we would
have obtained the parabolic cycle transformation

vissi— i1 1n i+2 i+l

i.e. a cyclic permutation of the maps involved in de ning the parabolic cycle trans-
formation associated to {/g; Sg). Moreover, it is easy to see that

visi = (i 1) voiso( i 1) !
so that ,.s; and ,.s, are conjugate Mebius transformations.

Let v be a boundary vertex of D and let s be a side with an end-point atv. The
associated parabolic cycle transformation is denoted by,.s. Observe that .5 is a Mebius
transformation with a xed point at the vertex v 2 @H. In Lecture 9 we saw that if a
Mebius transformation has at least one xed pointin @ then it must be either parabolic,
hyperbolic or the identity. Thus each parabolic cycle trandormation is either a parabolic
or hyperbolic Mebius transformation or the identity.

De nition. We say that a parabolic cycle P satis es the parabolic cycle condition if for
some (hence all) vertexv 2 P, the parabolic cycle transformation s is either a parabolic
Mebius transformation or the identity

Remark. Let 2 Meb(H)nfidg. Recall that is parabolic if and only if the trace, ( ), is
4. Also note thatif =idthen ( )=4. Hence a parabolic cycleP satisifes the parabolic
cycle condition if for some (hence all) vertexv 2 P, the parabolic cycle transformation s
has ( vs)=4.

Remark. Observe that s, is parabolic (or the identity) if and only if .5, is parabolic
(or the identity) for any other vertex v; on the parabolic cycle containingvg. Also observe
that .5 is parabolic (or the identity) if and only if . s is parabolic (or the identity). Thus
it makes sense to say that a parabolic cycld® satis es the parabolic cycle condition.

We can now state Poincae's Theorem in the case wherD has boundary vertices (but
no free edges).

Theorem 20.2.1 (Poincae's Theorem)

Let D be a convex hyperbolic polygon with nitely many sides, pos#ly with boundary
vertices (but with no free edges). Suppose thaD is equipped with a collection G of side-
pairing Mebius transformations such that no side is paired with itself.

that:
(i) each elliptic cycle § satis es the elliptic cycle condition, and
(i) each parabolic cycle P; satis es the parabolic cycle condition.
Then:
() The subgroup = hGigenerated byG is a Fuchsian group,

(i) The Fuchsian group hasD as a fundamental domain.
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(iii) The Fuchsian group can be written in terms of generators and relations as follows.
For each elliptic cycle 5, choose a corresponding elliptic cycle transformation; = s
(for some vertex v on the elliptic cycle ). Then is isomorphic to the group with
generators ¢ 2 G (i.e. we take G to be a set of symbols), and relations P where
mj sumg =2 :
= hg2Gj M= = M=ei:

Remark. The hypothesis that D does not have a side that is paired with itself is not a
real restriction: if D has a side that is paired with itself then we can introduce anther
vertex on the mid-point of that side, thus dividing the side into two smaller sides which are
then paired with each other. See Lecture 19.

x20.3 An example of Poincae's Theorem: the modular group

We can use the version of Poincae's Theorem stated in Theaem 20.2.1 to check that the
modular group PSL(2;Z) is a Fuchsian group, and to write it in terms of generators ard

relations. p_ p_

Consider the polygon in Figure 20.3.3; hereA =( 1+i 3)=2andB =(1+ i 3)=2.

The side pairing transformations are given by 1(z) = z+1and 2(z) = 1=z. Notice that
2(A)= B and »(B)= A.

A
s
| S2

Figure 20.3.3 : Side pairing transformations for the modular group

The side |A;B] is paired with itself. We need to introduce an extra vertex C at the
mid-point of [A; B ]; see the discussion in Lecture 19. This is illustrated in Fjure 20.3.4.
We calculate the elliptic cycles. We rst calculate the elliptic cycle containing the vertex

A:
A |1 B | B
S1 ' Sy, Sy
2 ! A A
Sz S1
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A
S
| S2

Figure 20.3.4 : Introduce an extra vertex at C so that the side sz is paired with the side
Sy

HenceA! B is an elliptic cycle which has elliptic cycle transformation Yi@=( z
1)=z. The angle sum of this elliptic cycle satis es

30A+\B)=3( =3+ =3)=2:

Hence the elliptic cycle condition holds.
Now calculate the elliptic cycle containing the vertex C:

c ,. C , ¢

S3 S4 S3
Hence we have an elliptic cycleC with elliptic cycle transformation ,. The angle sum of

this elliptic cycle satis es
2AC=2:

Hence the elliptic cycle condition holds.
We now calculate the parabolic cycles. There is just one pafaolic cycle, the cycle that
contains the vertex 1 . We have

1 (1 1 1
ST S2 S1

so that we have a parabolic cyclel with parabolic cycle transformation 1(z) = z+1. As
1 has a single xed point at 1 it is parabolic. Hence the parabolic cycle condition holds.
By Poincae's Theorem, we see that the group generated by ; and » is a Fuchsian
group. Leta = 4, b= 5. Then we can use Poincae's Theorem to write the group
generated by 1; » in terms of generators and relations, as follows:

PSL(2;Z) = ha;bj (b 'a)® = b = «i:

Remark. The above example illustrates why we need to assume thaD does not have
any sides that are paired with themselves. If we had not intraluced the vertex C, then we
would not have got the relation ¥ = e.
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Exercise 20.1
Consider the polygon in Figure 20.3.5. The side-pairing trasformations are:
z

@)= 2427 2D = o 7

What are the elliptic cycles? What are the parabolic cycles? Use Poincae's Theorem
to show that the group generated by 1; 2 is a Fuchsian group and has the polygon in
Figure 20.3.5 as a fundamental domain. Use Poincae's Theem to show that the group
generated by 1; 2 is the free group on 2 generators.

Figure 20.3.5 : A fundamental domain for the free group on 2 generators

Exercise 20.2
Consider the hyperbolic quadrilateral with vertices

and a right-angle at B, as illustrated in Figure 20.3.6.

"’|w\

a+ pz—z)

o

a+ pTE)

Figure 20.3.6 : A hyperbolic quadrilateral
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(i) Verify that the following Mebius transformations of H are side-pairing transforma-
tions: P

1(2)=z+2+ pi; 2(2) = 22,3,

(i) By using Poincae's Theorem, show that these side-paring transformations generate
a Fuchsian group. Give a presentation of in terms of generabrs and relations.
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21. The signature of a Fuchsian group

x21.1 Introduction

Let be a Fuchsian group and let D (p) be a Dirichlet polygon and suppose that Areg(D) <
1 . We equip D with a set of side-pairing transformations, subject to the @mndition that a
side is not paired with itself. We can construct a spaceH= by gluing together the sides
that are paired by side-pairing transformations. This spae is variously called aquotient
space an identi cation space or an orbifold.

Before giving some hyperbolic examples, let us give a Euclehn example. Consider
the square in Figure 21.1.1(i) with the sides paired as indiated. We rst glue together
the horizontal sides to give a cylinder; then we glue the verical sides to give a torus. See
Figure 21.1.1(ii).

0} (ii)

Figure 21.1.1 : (i) A square with horizontal and vertical sides paired as maked, and (ii)
the results of gluing rst the horizontal and then the vertic al sides together

In the above Euclidean example, the angles at the vertices oD glued together nicely
(in the sense that they glued together to form total angle 2 ) and we obtained a surface.
For a general Fuchsian group the situation is slightly more omplicated due to the possible
presence of cusps and marked points.

Consider a Fuchsian group with Dirichlet polygon D. Let us describe how one con-
structs the spaceH=.

Let E be an elliptic cycle in D. All the vertices on this elliptic are glued together.
The angles at these vertices are glued together to give totahngle sumE). This may or
may not be equal to 2 . The angle sum is equal to 2 if and only if the elliptic cycle E
is an accidental cycle. (Recall that an elliptic cycle is sail to be accidental if the elliptic
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cycle transformation is equal to the identity; equivalently in the elliptic cycle condition
msum(E) =2 we havem =1.)

De nition. Let E be an elliptic cycle and suppose that sumE) 6 2 . Then the vertices
on this elliptic cycle are glued together to give a point onH= with total angle less than
2 . This point is called a marked point.

A marked point on H= is a point where the total angle is less than 2 . Thus they look
like “kinks' in the surface H=.

De nition. It follows from Proposition 17.3.1 that there exists an integer mg such that
mesum(E) =2 . We call mg the order of the corresponding marked point.

Now let P be a parabolic cycle. Vertices along a parabolic cycle are géd together.
Each parabolic cycle gives rise to ecusp on H=. These look like “funnels' that go o to

in nity.
Topologically, the spaceH= is determined by its genus (the humber of "holes’) and the

numbers of cusps.
\/—\J\ \Q/<

Figure 21.1.2 : A hyperbolic surface of genus 2 with 3 cusps

If there are no marked points, then we callH= a hyperbolic surface

For example, consider the Fuchsian group generated by the lyperbolic octagon de-
scribed in Lecture 19. The octagonD in Lecture 19 is a fundamental domain for . If
we glue the edges oD together according to the indicated side-pairings then we btain a
hyperbolic surfaceH=. Notice that there is just one elliptic cycle E and that sum(E) =2 .
This surface is a torus of genus 2, i.e. a torus with two holesSee Figure 21.1.3.

e

Figure 21.1.3 : Gluing together the sides ofD gives a torus of genus 2

x21.2 The genus and Euler characteristic

Given a 2-dimensional spaceX , one of the most important topological invariants that we
can associate toX is its Euler characteristic (X). Let us recall how one calculates the
Euler characteristic.
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De nition. Let X be a 2-dimensional space. TherX can be triangulated into nitely
many polygons. Suppose that in this triangulation we haveV vertices, E edges andr faces
(i.e. the number of polygons). Then the Euler characteristt is given by

(X)=V E+F:

Examples.

(i) Consider the triangulation of the space illustrated in Figure 21.2.4; this is formed by
gluing eight triangles together. This space is homeomorplt (meaning: topologically
the same as) to the surface of a sphere. There ané = 6 vertices, E = 12 edges and
F = 8 faces. Hence the Euler characteristicis =6 12+8=2.

(i) Consider the triangulation of a torus illustrated in Fi gure 21.2.5. There is just one

polygon (soF = 1) and just one vertex (so V =1). There are two edges, SoE = 2.
Hence =0.

Figure 21.2.4 : A triangulation of the surface of a sphere; hereV = 6;E = 12;F =8, so
that =2

Y
Y

Y
Y

Figure 21.2.5 : A triangulation of the surface of a torus; hereV = 1;E = 2;F =1, so
that =0
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De nition. Let X be a 2-dimensional surface. Thegenusg of X is given by
X)=2 2g:

Thus, a sphere has genus 0 and a torus has genus 1. Topologlgathe genus of a surface
is the number of “handles' that need to be attached to a spherd¢o give the surface. One
can also think of it as the number of "holes' through the surfae.

x21.3 The signature of a cocompact Fuchsian group

De nition. Let be a Fuchsian group. Suppose that has a nite-sided Dir ichlet
polygon D (p) with all vertices in H and none in@. Then we say that is cocompact

Let be a cocompact Fuchsian group. The signature of is a set of geometric data
that is su cient to reconstruct as an abstract group. The si gnature will also allow us to
generate in nitely many di erent cocompact Fuchsian groups.

Let D(p) be a Dirichlet polygon for . Then D(p) has nitely many elliptic cycles, and
the order of each elliptic cycle transformation is nite.

De nition. Let be a cocompact Fuchsian group. Let g be the genus ofH=. Sup-
pose that there arek elliptic cycles E;;:::;E. Suppose thatf has ordermg = m; so
that mjsum(Ej) = 2 . Suppose thatE;:::;E are non-accidental andE.1;:::;E are
accidental.

The signature of is de ned to be

(That is, we list the genus of H= together with the orders of the non-accidental elliptic
cycles.) If all the elliptic cycles are accidental cycles, hen we write sig()=( g; ).

x21.4 The area of a Dirichlet polygon

Let be a cocompact Fuchsian group. We can use the data given ¥ the signature of
to give a formula for the hyperbolic area of any fundamental dmain of . (Recall from
Proposition 13.2.1 that, for a given Fuchsian group, any twofundamental domains have
the same hyperbolic area.)

Proposition 21.4.1
Let be a cocompact Fuchsian group with signaturesig()=( g;mz;:::;m;). Let D be a

fundamental domain for . Then 1

X
Areay(D)=2 @2g 2)+ 1 mi A (21.4.1)
i=1 .

Proof. By Proposition 13.2.1 it is su cient to prove that the formul a (21.4.1) holds for
a Dirichlet polygon D. As in Lecture 19, we can add extra vertices if necessary to aame
that no side is paired with itself. Suppose thatD hasn vertices (hencen sides).

elliptic cycles. By Proposition 17.3.1, the angle sum alonghe elliptic cycle  is

sum(g) = i—l
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Suppose that there ares accidental cycles. (Recall that an elliptic cycle is said tobe
accidental if the corresponding elliptic cycle transformation is the identity, and in particular
has order 1.) By Proposition 17.3.1, the internal angle sum Bbbng an accidental cycle is 2.
Hence the internal angle sum along all accidental cycles is 2.

As each vertex must belong to some elliptic cycle (either an léptic cycle with order at
least 2, or to an accidental cycle) the sum of all the internalangles ofD is given by

0 1

Xoq
2 @ _— + A
j=r M

By the Gauss-Bonnet Theorem (Theorem 7.2.1), we have
0 1

X1
Areay(D)=(n 2) 2 @ — sA (21.4.2)
j=1

Consider now the spaceH=. This is formed by taking D and gluing together paired
sides. The vertices along each elliptic cycle are glued togeer; hence each elliptic cycle in
D gives one vertex in the triangulation of H=. Hence D gives a triangulation of H= with
V = r + s vertices. As paired sides are glued together, there ar& = n=2 edges (notice
that we are assuming here that no side is paired with itself). Finally, as we only need the
single polygonD, there is only F = 1 face. Hence

2 2g= (H=)= V E+F=r+s %+1

which rearranges to give
n 2=2((r+s) (2 29): (21.4.3)

Substituting (21.4.3) into (21.4.2) we see that
0 1

Areay(D)

X 1
2 @+s (2 29 — sA
.:l J
0 J

1
X 1
2 @2g 2)+ 1 = A:
. mj
j=1
2

We can use Proposition 21.4.1 to nd a lower bound for the areaof a Dirichlet polygon
for a Fuchsian group.

Proposition 21.4.2
Let be a cocompact Fuchsian group (so that the Dirichlet polygonD (p) has no vertices
on the boundary). Then

A D =
reay(D) 21
Proof. By Proposition 21.4.1 this is equivalent to proving
X 1 1
29 2+ 1 — —: 21.4.4
g m; 42 ( )

j=1
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Notice that 1 1=my; is always positive.

If g>1then2g 2> 1. Hence the left-hand side of (21.4.4) is greater than 1, anthe
result certainly holds.

Suppose thatg=1 (sothat2g 2=0). Now m; 2sothatl 1=m; 1=2, which
is greater than 1/42. So the result holds.

Suppose thatg =0 (so that 2g 2= 2). As in the previous paragraph, we see that
foreachj =1;:::;r we have 1 1=m; 1=2. Ifr 5 then the left-hand side of (21.4.4) is
at least 1/2, so the result holds. Whenr = 4 the minimum of the left-hand side of (21.4.4)
occurs for signature (0;22; 2; 3); in this case

X 1 1 1 1 1

2 2+ 1 — 2+ -+ -+ -+ 1 = =
ST LT m 27272 3

ol

It remains to treat the case g = 0;r = 3. In this case, we must prove that
1 1 1 1
- = —+ —+ — —
stlim)=1 ¢+ 7+ 5 2
for k;I:m 2. We assume thatk [ m. Supposek = 3 then s(3;3;3) = 0 and
s(3;3;4) = 1=12> 1=42. Hences(3;I;m) 1=12 so the result holds. Hence we need only
concern ourselves withk = 2. Note that

s(2;2,m) < 0;s8(2;4;4) =0;s(2;4;5) =1=20> 1=42,;5(2;4;m) 1=20

Hence we need only concern ourselves with=3. Now

1
2. 3 - _ _
S(2;3;m) 6 m
which achieves the minimum 42 whenm = 7. 2
Remark. In Lecture 22 we shall show that if (9; my;:::; m;) is an (r + 1)-tuple of integers

Exercise 21.1

Consider the hyperbolic polygon illustrated in Figure 21.46 with the side-pairing transfor-
mations as indicated (note that one side is paired with itsef). Assumethat 1+ ,+ 3=2
(one can show that such a polygon exists).

(i) Show that there are 3 non-accidental cycles and 1 accideal cycle.

(i) Show that the side-pairing transformations generate aFuchsian group and give a
presentation of in terms of generators and relations.

(iii) Calculate the signature of .

Exercise 21.2
Consider the regular hyperbolic octagon with each internalangle equal to and the sides
paired as indicated in Figure 21.4.7. Use Exercise 7.3 to shothat such an octagon exists
provided 2 [0;3=4).
For which values of do 1; »; 3; 4 generate a Fuchsian group ? In each case when
is a Fuchsian group write down a presentation of , determine the signature sig( )
and brie y describe geometrically the quotient spaceH=
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Figure 21.4.6 : A hyperbolic polygon with sides paired as indicated

Figure 21.4.7 . See Exercise 21.2

Exercise 21.3
This exercise works through Proposition 21.4.2 in the case ken we allow parabolic cycles.
Let be a Fuchsian group and let D be a Dirichlet polygon for D. We allow D to have
vertices on @, but we assume thatD has no free edges (so that no arcs @@ are edges).
We also assume that no side oD is paired with itself.
The spaceH= then has a genus (heuristically, the number of handles), passibly some
marked points, and cusps. The cusps arise from gluing togetr the vertices on parabolic
cycles and identifying the sides on each parabolic cycle.

(i) Convince yourself that the H=PSL(2; Z) has genus 0, one marked point of order 3,
one marked point of order 2, and one cusp.

(Hint: remember that a side is not allowed to be paired to itséf.)
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(i) Using the Gauss-Bonnet Theorem, show that
0 1

X
Areay(D)=2 @rg 2)+ 1 mi + A
i=1 :

(i) Show thatif ¢ 1 then
Areay(D) 3

and that this lower bound is achieved for just one Fuchsian goup (which one?).
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22. Existence of a Fuchsian group with a given signature

x22.1 Introduction

In Lecture 21 we de ned the signature sig() = ( g;my;:::;m;) of a cocompact Fuchsian
group. We saw that if D is a fundamental domain for then
0 1
X 1
Areay(D)=2 @2g 2)+ 1 A
]

i=1
As this quantity must be positive, the condition that

X 1
2g 2)+ 1 — >0 (22.1.2)
j=1

This gives a method for constructing in nitely many examples of cocompact Fuchsian
groups. (Recall that a Fuchsian group is said to be cocompact if it has a Dirichlet
polygon with all its vertices inside H.)

x22.2 Existence of a Fuchsian group with a given signature

Theorem 22.2.1
Letg Oandm; 2,1 | r beintegers. (We allow the possibility that r = 0, in which
case we assume that there are nm;s.) Suppose that

X
2g 2)+ 1 = >0 (22.2.1)
j=1

Then there exists a cocompact Fuchsian group with signature

Remark. In particular, for each g 2 there exists a Fuchsian group 4 with signature
sig( g) =(9;, ). Thus foreachg 2 we can nd a Fuchsian group g such that H= 4is a
torus of genusg.

Remark. The proof of Theorem 22.2.1 consists of constructing a polyan and a set of

side-pairing transformations satisfying Poincae's Theorem. There are two phenomena that
we want to capture in this polygon.
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Figure 22.2.1 : Glueing together the sides paired gives a handle.

(i) We need to generate handles. By considering the examplefa regular hyperbolic
octagon in Lecture 19, we see that the part of a polygon illustated in Figure 22.2.1
with the side-pairing illustrated will generate a handle.

(i) We need to generate marked points. By considering the dscussion in Lecture 20 of
how the modular group satis es Poincae's Theorem, we seehat the part of a polygon
illustrated in Figure 22.2.2 with the side pairing illustrated will generate a marked
point arising from an elliptic cycle of order m.

2=

Figure 22.2.2 : Glueing together the sides paired gives a marked point of ater m.

Proof. The proof is essentially a big computation using Poincaes Theorem. We con-
struct a convex polygon, equip it with a set of side-pairing ransformations, and apply
Poincae's Theorem to show that these side-pairing transbrmations generate a Fuchsian
group. Finally, we show that this Fuchsian group has the requred signature.

We work in the Poincae disc D. Consider the origin 02 D. Let denote the angle

2 .
4g+r

Draw 4g + r radii, each separated by angle . Fix t 2 (0;1). On each radius, choose a
point at (Euclidean) distance t from the origin. Join successive points with a hyperbolic
geodesic. This gives a regular hyperbolic polygoM (t) with 4g+ r vertices.

Starting at an arbitrary point, label the vertices clockwis e
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Figure 22.2.3 : The polygon M (t) is a regular hyperbolic (49 + r)-gon

On each of the rst r sides ofM (t) we construct an isoceles triangle, external toM (t).
We label the vertex at the “tip' of the | isoceles triangle byw; and construct the triangle
in such a way so that the internal angle atw; is 2=mj. If m; = 2 then 2 =m; =
and we have a degenerate triangle, i.e. just an arc of geodestonstructed in the previous
paragraph and w; is the midpoint of that geodesic. Call the resulting polygonN (t). See
Figure 22.2.4.

V2:4

V2.2

V21

Vi3 Vi1
V12

Figure 22.2.4 : lllustrating N (t) inthe caseg=2, r =4 with my;my;m3z > 2 andmy = 2.
The solid dots indicate vertices ofN (t) (note the degenerate triangle with vertex at wy).

Consider the verticesvj;wj;Vvj+1 (1 ] r). Pair the sides as illustrated in Fig-
ure 22.2.5 and call the side-pairing transformation ;. Note that ; is a rotation about w;
through angle 2=m ;. For each” =1;2;:::;9, consider the verticesv-.1;Vv-;2; v:;3; V4. Pair
the sides as illustrated in Figure 22.2.6 and call the side-giring transformations -.1; 2.

We label the sides ofN (t) by s(vj);s(v-;);s(wj) where the sides(v) is immediately
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Figure 22.25 : joor).

Figure 22.2.6 : Pairing the sides between verticessr.q; V.. 2; V--3; V4.

clockwise of vertexv.

We will now apply Poincae's Theorem to the polygon N (t). Our aim is to show how to
chooset 2 (0;1) so that the side-pairing transformations above generatea Fuchsian group
with the required signature. First we calculate the elliptic cycles.

For eachj =1;:::;r, consider the pair (w;;s(v;)). Then
Wj K Wj ! W
s(vj ) s(w; ) s(vj)

Hence we have an elliptic cyclew; with corresponding elliptic cycle transformation ;. The
angle sum is given by the internal angle atw;, namely sum;) =2 =m ;. Hence

mjsum(w; ) = 2

so that the elliptic cycle condition holds.
Consider the pair (v-1;s(v:1)). Using Figure 22.2.6, we see that we get the following
segment of an elliptic cycle:

! Vg ! Vg ! V.3 ! Vo ! Vogr:a !
with corresponding segment of elliptic cycle transformaton
w2 1 52 01

which we denote by [ .1, -;2]. (Here we use the notational convention thatvg.1:1 = Vi.)
Now consider the pair (vj;s(v;)). The elliptic cycle through this pair contains the
following:
Vj | Vi+1 | Vi+1 |
s(vi) - s(w) T s(ve)
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Thus, starting at the pair (v1:1;S(v1:1)), we have the elliptic cycle E

Vi1 ! Vi:4 ! V1:3 ! V1:2 ! V2:1 ! ! Vg 1;2 ! Vg1 !
Vgia! Vga! vga! vi!l vo! ! Vy

with corresponding elliptic cycle transformation

rr1 il g5 g2l [ 115 22]

Let 2 (t) denote the internal angle of each vertex in the polygorM (t). Let (t) denote
the internal angle at each vertex at the base of thej " isosceles triangle that is added to
the polygon M (t) to form the polygon N (t), that is j(t) is the angle\ w;jv;vj+1, and is
also the angle\ w;v;.1Vvj. See Figure 22.2.7. Then the angle sum along the elliptic cye E
is given by

X
sumE) =8g +2  ((O+ ;(O):

j=1

Figure 22.2.7 : Labelling the angles (t), ;(t) in the polygon N (t).

We show thatt (and hence the polygonN (t)) can be chosen so that sumiE) =2 . Then
the elliptic cycle condition holds, E is an accidental cycle, and we can apply Poincae's
Theorem.

One can prove using hyperbolic trigonometry that

n © = o,

i 10 = o

. . 12
im ® = 3 24g+ 1’
im0 = 3 &

(compare with Exercise 29.2). Now
X

lim8g ()+2  ( ()+ ;(1)=0
j=1
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and (after some rearrangement)
0 1

X X
Iim 8 (t)+2 (M)+ ;()=2 @@2g 2)+ 1 i A+2: (22.2.2)
t o =1 =1 m;
The rst term in the right-hand side of (22.2.2) is positive by the assumptions of the

theorem. Hence
X

Iim8g (t)y+2 (@M+ ;@) >2:
t 0 =1
As the quantities (t) and j(t) vary continuously in t, by the Intermediate Value
Theorem there existsty 2 (0;1) such that

sum(E) =2 :

Hence, for the polygonN (tg), the elliptic cycle condition holds.

By Poincae's Theorem, the side-pairing transformations generate a Fuchsian group .
It remains to check that the group has the required signature.

The group has r elliptic cycles corresponding to each of thewj. The elliptic cycle
transformation associated to the elliptic cyclew; has orderm;.

Consider the spaceH=. This is formed by taking N (tg) and gluing together the paired
sides. ThusH= has a triangulation using a single polygon (so F = 1) with V = r +1
vertices (as there arer + 1 elliptic cycles) and E = 2g+ r edges. Leth denote the genus of
H=. Then by the Euler formula,

2 2h=V E+F=(r+1) (2g+n+1=2 2g:
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23. Properly discontinuous group actions

x23.1 Background

Recall that the set of Mebius transformations of H forms a group Meb(H) under composi-
tion. This group has a very rich structure; for example, we stall see how to de ne a notion
of distance on this group (so that we can say how far apart two Mbius transformations of
H are). We shall also study a very important class of subgroupof Meb(H) called Fuch-
sian groups The purpose of these notes is to discuss the action of a Fudias group on
the boundary @ in terms of its limit set. These sets are important and often intricate
geometrical objects (for example, they are often of a fracthnature).

x23.2 Metric spaces

We will use several concepts from metric spaces. In this sdon we quickly review many of
the necessary de nitions. For more details, see almost any ®ok on metric spaces (for ex-
ample W.A. Sutherland, An Introduction to Metric and Topological Spaces, O.U.P., Oxford,
1975).

In the course we saw how to de ne a notion of distance on the uper half-plane H. This
distance function satis es several nice properties (suchsthe triangle inequality). A metric
space just abstracts these properties.

De nition. Let X be a set. We say that a functiond : X X ! R is a metric (or
distance function) if:

() for all x;y 2 X, we haved(x;y) 0O andd(x;y)=0ifandonlyif x =y;
(i) forall x;y 2 X, we haved(x;y) = d(y; X);
(i) the triangle inequality holds: for all x;y;z 2 X we haved(x;z) d(x;y) + d(y;2).

We call the pair (X;d) a metric space

Examples.
1. Take X = R and de ne d(x;y) = jx Vj.
2. Take X = R? and de ne

P _ :
d((x1;X2);(y1;¥2)) =y Xaj2+ jy2  Xgj%

3. Take X = H with dy(z;2% = inf flengthy( ) j is a piecewise-di erentiable path
from z to z%
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x23.2.1 Convergence

We know how to de ne convergence of sequences R: if X, 2 R then we say thatx, ! x
if for all "> 0O there existsN 2 N such that for all n N we havejx, Xj<". Thatis,
given any" > 0 the distance (in R) betweenx, and x is less than" provided n is su ciently
large. We can recast this de nition in terms of metric spaces

De nition. Let (X;d) be a metric space. Letx, 2 X be a sequence of points irK. We
say that x,, convergesto x 2 X (and write x, ! x) if for all "> 0 there existsN 2 N such
that for all n N we haved(xp;x) <".

x23.2.2 Open and closed sets

Let (X;d) be a metric space. Letx 2 X and let "> 0. The set
B-(x)=fy2 X jd(xy)<"g

of all points y that are distance at most " from x is called the open ball of radius" and
centre x. We can think of B-(x) as being a small neighbourhood around the poinix.

A subsetU X is called openif for all x 2 U there exists" > 0 such that B-(x) U,
i.e. every point x in U has a small neighbourhood that is also contained irJ.

One can easily show that open ballB-(x) are open subsets. (This is not a tautology!
Our choice of terminology strongly suggests that an open balwill indeed be an open set;
however one does need to check that an open ball is open.)

De nition. Let x 2 X. An open setU containing x is called aneighbourhood of x.

The idea is that a neighbourhood ofx contains all points that are su ciently close to x.
Recall that a sequencex,, 2 X converges tox if x,, is arbitrarily close to x for all su ciently
large n. With this in mind, the following should not be a surprising r esult.

Lemma 23.2.1
Let (X;d) be a metric space. Letx,;x 2 X. Then the following are equivalent:

i xp! xasn!l ;

(i) if U is a neighbourhood ofx then there existsN 2 N such that forall n N we have
Xn 2 U.

Proof. This is a case of unravelling the de nitions. 2

A set F is said to beclosedif its complement X nF is open. There are other ways of
de ning closed sets:

Proposition 23.2.2
Let (X;d) be a metric space and letr X . Then the following are equivalent:

() F is closed (i.e.X nF is open);

(i) if x5 2 F is a sequence of points irF such that x, ! x for somex 2 X thenx 2 F
(i.e. any convergent sequence of points ifr has its limit in F).

Let us give some examples.
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Examples.

(i) Take X = Rand letl = (a;b betheinterval | = fx 2 Rja<x<bg Then
| is an open set. To see this, takex 2 | and let " = minfx a;b xg. Then
B-(x) = (x "jx+™") | (draw a picture). This is why we call (a;b) an open
interval .

(i) Take X = Randletl =[a;h=fx2 Rja x bg Thenl is a closed set as its
complementisRnl =( 1 ;a)[ (b;1), the union of two open sets.

(i) Take X = Randletl =[a;h = fx 2 Rja x<bg Then I is neither open
nor closed. It is not open because no small neighbourhooda( ";a + ") of a is not
contained in I . It is not closed because the sequence, = b  1=n lies insidel, but
Xn! bandbisnotin .

In practice, sets de ned by strict inequalities (<, >) normally give open sets, and sets
de ned by weak inequalities ( , ) normally give closed sets.
Consider the usual Euclidean metric onR? de ned by

p . — :
drz((X1;%2); (Y1:Y2)) = jy1  X1j?+ jy2  Xoj2

Let x = (x1;X2). The open ball B-(x) around a point x is a Euclidean disc of Euclidean
radius " and centrex. In contrast, if we work in the upper half-plane H with the hyperbolic

metric dy then the open ball B-(z) is a hyperbolic disc centred onz and with hyperbolic

radius ". However, in Exercise 5.4 we saw that a hyperbolic disc is a Hlidean disc (albeit
with a di erent centre and radius). In particular, one can pr ove:

Lemma 23.2.3
The open sets inH de ned using the hyperbolic metric dy are the same as the open sets
in the upper half-plane using the Euclidean metric.

(For those of you familiar with the terminology: this just says that the topology generated
by the hyperbolic metric is the same as the usual Euclidean tpology.)

x23.2.3 Compactness

A compact metric spaces is, roughly speaking, one in which ggences of points cannot
“escape’. There are two ways in which a sequence could escagi the sequence could tend
to in nity (that is, the set is "'unbounded"), or (ii) the sequ ence could tend to a limit that
is outside the set, as happens in Example (iii) inx23.2.2 (that is, the set is "not closed’).

Let (X;d) be a metric space. We say thatX is (sequentially) compact if every sequence
Xn 2 X has a convergent subsequence, i.e. there exigf ! 1 such that x,, ! x for some
X2 X.

Examples.
1. [0;1] is compact.

2. (0;1) is not compact (becausex,, = 1=n does not have a convergent subsequence in
(0; 1)).

Remark. There are other, equivalent, de nitions of compactness, suh as compactness in
terms of open covers.
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The characterisation of compactness is terms of the set begnclosed and bounded is only
valid for subsets of R". In a general metric space, a compact set is always closed and
bounded, but the converse is not necessarily true. We will dén restrict our attention to
the following class of metric spaces.

De nition. A metric space isproper if every closed ballB-(x) = fy 2 X j d(x;y)
is compact.

g

Subsets ofR", the upper half-plane, the Poincae disc, Meb(H) are all proper metric spaces.
The set of continuous real-valued functions de ned on [01] with the metric d(f;g) =
SUpzo:17if (X)  9(x)j is not a proper metric space.

Exercise 23.1
Let (X;d) be a metric space. LetK X be a compact subset and le K be a closed
subset of K . By using Proposition 23.2.2 show thatF is itself compact.

x23.2.4  Continuity

Continuity is a key idea in metric spaces. Let (X;d) and (Y; ) be metric spaces and let
f:X1 Y.

De nition. We say that a function f : X ! Y is continuous at a 2 X if: for all "> 0
there exists > 0 such that if d(x;a) < then (f(x);f(a) <". We say that f is
continuous if it is continuous at a2 X for all a2 X.

Thus a function f : X I Y is continuous at a if points that are close to a2 X get mapped
by f to points that are close tof (a) 2 Y. A function is continuous if it is continuous at
each point. If X and Y are subsets ofR (with the usual metric) then continuity has its
usual meaning: one can draw the graph of without any breaks or jumps.

There are many other ways of characterising continuity. We gve some below. First
recall that if f : X ! Y is a function and U Y then the pre-image ofY under f is the
set:

f JU)=fx2 X jf(x)2 Ug:

We do not assume thatf is invertible here: this de nition makes sensepfgr aﬁy_functon f.
(For example, if f : R! Ris given by f(x) = x?>then f (fbg) = f b;  bgif b > 0,
f L(fog)= fOg, andf I(fbg) = ; if b<0.)

Lemma 23.2.4
Let (X;d) and (Y; ) be metric spaces and lef : X ! Y. Then the following are equivalent:

(i) f is continuous;
(i) if xp, 2 X is such that x, ! x for somex 2 X then f (x,)! f(X);
(i) if U Y is any open set thenf 1(U) X is an open set.

Note that Lemma 23.2.4(iii) does not say that if U X is open thenf (U) Y is open
(this is false in general).

Continuity also works well with compactness. The following result says that the con-
tinuous image of a compact set is compact:
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Lemma 23.2.5
Let (X;d) and (Y; ) be metric spaces and lef : X ! Y be continuous. LetK X be a
compact set. Thenf (K)= ff(x)jx2 Kg Y is compact.

Note that this does not say that the pre-imagef (L) of a compact subsetL Y is a
compact subset ofX (this is false in general).
Recall thatamap :X ! X isanisometry if d( (x); (y)) = d(x;y) for all x;y 2 X.

Exercise 23.2
Prove that an isometry is continuous.
x23.2.5 Discreteness

Let"> Oandx 2 X. We call B-(x) = fy 2 X jd(x;y) <" gthe "-ball around x, or simply
a neighbourhood of x.

De nition. Let Y X be a subset ofX. We say that a point x 2 Y is isolated in Y if
there exists" > 0 such that B-(x) \ Y = fxg, i.e. there are no points ofY (other than x
itself) within distance " of x.

De nition. Let Y X be a subset ofX. We say that Y is discrete if every element of
Y is isolated in Y.

Examples.

1. Take X = RandletY = fl=njn=1;23;:::9g. ThenY is discrete (notice that in
the de nition of discreteness, the value of" chosen is allowed to depend on the point
x2Y).

2. Take X = RandletY = fl=njn=1;2;3;:::g[f 0g. Then Y is not discrete as the
point O is not isolated: there are points of the form Xn arbitrarily close to O.

Exercise 23.3
Let (X;d) be a metric space and letY  X. Show that the following are equivalent:

() Y is a discrete subset;
(i) if x, 2 Y is a sequence inY such that x, ! x 2 Y asn!1 , then there exists
N 2 Nsuchthatx, = xforalln N.

x23.2.6 Limit points

De nition. Let Y X be an arbitrary subset of X. We say that a point x 2 X is a
limit point of Y if every neighbourhood ofx contains a pointy 2 Y such thaty 6 x.

We let ( Y) denote the set of all limit points of the subsetY .

Example. Take X = RandY = f( 1)"+1=njn=1;2:::g. Then Y has two limit
points: 1 and 1.

Example. Take X = R and Y = Q. As any real number can be arbitrarily well-
approximated by a rational, we see that every real number is dimit point of Y.

Example. Let Y be a nite subset of a metric spaceX . Then there are no limit points.
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x23.3 Properly discontinuous group actions

Let (X;d) be a metric space. For example, we could hav& = R? with the usual Euclidean
metric, or X = H with the hyperbolic metric.

Let be a group of homeomorphisms of X and let x 2 X . (Later on we will assume in
addition that is a group of isometries, but for the moment we need only assume that the
elements of are homeomorphisms.)

De nition. The orbit of x under is the set
(x=Ff xj 2 g X

That is, the orbit ( x) of x under is the set of points one can reach starting at x and
applying every possible element of .

De nition. The stabiliser of x under is the set
Stab (x)=f 2 | (X)=xg

That is, the stabilister Stab (x) of x under is the set of transformations in that leave
X xed.

Exercise 23.4
Show that, for eachx 2 X, Stab (x) is a subgroup of .

Examples.

() Let X = R? with the Euclidean metric. Let = f pm | am(XYy) = (X+ ny+
m); (n;m) 2 Z2g denote the group of isometries ofR? given by integer translations.
Then the orbit of the origin is ((0 ;0)) = f(n;m) j (n;m) 2 Z?g, i.e. the integer
lattice. The stabiliser of the origin is Stab ((0;0)) = f .00, i.e. the only isometry in

that xes the origin is the identity.

(i) Let X = D with the hyperbolic metric dp. Let = f | (2)= €' z; 2[0;1)g
denote the group of rotations around the origin inD. Let z = re' 2 D. Then the
orbit ( z) of z is the (Euclidean) circle in D of radius r. If z 6 O then the stabiliser
Stab (z) of z contains just the identity transformation. As every transf ormation in

xes 0, the stabiliser of the originis : Stab (0) = .

(i) Let X = R? with the Euclidean metric. Let = fid; 1; »; 3g where id; 1; 2; 3
denote the identity and rotations around the origin through angles 90, 180, 270 de-
grees, respectively. Then the orbit of &;y) 2 R? contains either 4 points forming a
square (if (x;y) 6 (0;0)) or is the origin (if (x;y) = (0;0)). If (x;y) 6 (0;0) then
Stab ((x;y)) = fidg; however, Stab ((0;0)) = .

(iv) Let X = H with the hyperbolic metric dy. Let = f | h(2) = z+ n;n 2 Zg
denote the group of integer translations. Then, for anyz 2 H, the orbit of z is
(z)=fz+ njn 2 Zg, the set of integer translations ofz. As no translation, other
than the identity, xes any point we have that Stab (z) = fidg.

Exercise 23.5

Let X = H with the hyperbolic metric dy. Let = Meb( H) be the group of all Mebius
transformations of H. Calculate the orbit of i and the stabiliser ofi.
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Exercise 23.6
Calculate Stabpg) (2,7)(i)-

In the rst, third and fourth examples above we have the following property: the orbit
of every point in X is a discrete subset ofX, and the stabiliser of every point is nite.
Heuristically, this means the following: if x 2 X, then (x) is moved a long way fromx,
except for possibly nitely many thatleave x xed. Contrast this with the second example.
Here, the orbit of z can contain points other than z that are arbitrarily close to z; moreover,
for some points (actually, just the origin) there are in nit ely many transformations that x
Z. This motivates the following de nition.

De nition. Let (X;d) be a metric space and let be a group of homeomorphisms oK .
Then acts properly discontinuously on X if: for all x 2 X and for all non-empty compact
subsetsKk X thesetf 2 | (x)2 Kgis nite.

Heuristically we think of a compact set containing x as being a small closed set around
X. Thus acts properly discontinuously if, given any point x 2 X, all but nitely many
transformations in move the point x a long way from where it started.

There are many equivalent ways of de ning what it means for a goup of homeomor-
phisms to act properly discontinuously. The following will be the most important for our
purposes.

Lemma 23.3.1
Let (X;d) be a proper metric space and let be a group of homeomorphisms oK. Then
the following are equivalent:

(i) acts properly discontinuously onX;
(i) forall x 2 X,

(a) the orbit ( x) is a discrete subset ofX , and
(b) the stabiliser Stab (x) is a nite subgroup of

Proof. We prove (i) implies (ii). Suppose that acts properly disco ntinuously.

Suppose, for a contradiction, that ( x) is not discrete. Then there exist , 2 and
Xp 2 X such that ,(x)! Xo and all the points ,(x) are pairwise distinct. Let "> 0 and
let K = K+(Xp). As X is a proper metric spaceK is compact. As ,(x)! Xgq, there exists
N suchthatif n N then j(x) 2 K. As the points ,(x) are pairwise distinct it follows
that the transformations |, are pairwise distinct. Hence there are in nitely many , 2
such that ,(x) 2 K, contradicting the fact that acts properly discontinuous ly.

Now let x 2 X and let K = fxg. Then K is compact. Clearly

Stab (x)=f 2 |J X)=xg=f 2 | (X)2Kg:

As acts properly discontinuosly, we have that f 2 | (x) 2 Kg is nite. Hence
Stab (x) is nite.
We prove (ii) implies (i). Suppose that, for all x 2 X, we have that ( x) is discrete
and Stab (x) is nite. Let K be compact and letx 2 X. We want to show that f 2 |
(x) 2 Kgis nite.
Suppose not, i.e. there exist in nitely many distinct ,2f 2 | (x) 2 Kg. Consider
the set of pointsf (x)g Kg. This set could be nite or in nite. If it is in nite then,
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as K is compact, the sequence of points ,(x) has a convergent subsequence; by taking
a further subsequence if necessary we can assume that the pt in this subsequence are
distinct. Hence f (x)g has a limit point. Hence ( x) has a limit point. This contradicts
the fact that ( x) is discrete.

Now suppose that there are in nitely many distinct , 2f 2 | (x) 2 Kg but
that the set of points f ,(x)g is nite. Write f (x)g = fx®;:::;x®g. For eachj,
1 k, consider the setf , j n(x) = xU)g. We want to show that this set is
nite. As each stabiliser is nite, let Stab (x) = fo;;:::;9-g. For eachj, x a choice
W2f 1 nx)= x0g Then (x) = x0) = W(x), sothat ( V) T 2 Stab (x).
Hence forsome 1 ~ r we have that ( (j)) 1 = g. Hence = (j)g‘. Hence there are
only nitely many possibilities for . Hencef . n(x)= xU)gis nite.

Hencef 2 | (x) 2 Kgis nite. 2

Here is another equivalent condition for a group of isometrés to act properly discontin-
uously.

Proposition 23.3.2
Let (X;d) be a proper metric space and let be a group of isometries ofX. Then the
following are equivalent:

()  acts properly discontinuously;

(i) each point x 2 X has a neighbourhoodU containing x such that (U)\ U 6 ; for
only nitely many 2

Proof. Recall from Lemma 23.3.1 that a group of isometries acts onX properly dis-
continuously if and only if the orbit ( Xx) of each pointx 2 X is discrete and the stabiliser
Stab (x) is nite.

We prove (i) implies (ii). Let x 2 X. As the orbit ( x) of x is discrete, there exists
"> 0 such that B+(x) does not contain any points of (x) other than x. Let U  B.-»(X)
be any neighbourhood ofx. Supposethat (U)\ U6 ;. Lety2 (U)\ U. Then,asy 2 U,
we have thatd(x;y) <"=2. Asy 2 (U) we haved(y; (x)) <"=2. Hence by the triangle
inequality, d(x; (x)) d(x;y)+ d(y; (x)) <". Hence (x) 2 B-(x). As B-(x) does not
contain any points in ( x) other than x, it follows that (x) = x, i.e. 2 Stab (x). Hence
there are only nitely many 2 for which (U)\ U6 ;.

We prove that (ii) implies (i). Let x 2 X and suppose, for a contradiction, that ( x)
is not discrete. Choose pairwise distinct , such that ,(x) ! x; for somex; 2 X but

n(X) 6 x1 . Let U be the neighbourhood ofx; given by (ii). Then there exists N 2 N
such thatif n N then ,(x)2 U. Nowifn N then ,(x)2 U and y(x) 2 U. Hence
x2 U\ 'U. Hence

N (S ANV V) R U AW U - I

By (i), there are only nitely many possibilities for n ,% n N, contradicting the fact
that the |, are pairwise distinct.

Let x 2 X and suppose that Stab (x) is in nite. Then there exist in nitely many
distinct , 2 such that ,(x) = x. Let U be the neighbourhood ofx in (ii). Then
X= n(X) 2 n(U). Hencex 2 ,(U)\ U. But there are only nitely many  with this
property, a contradiction. 2
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Exercise 23.7

Recall that the modular group = PSL(2 ;Z) acts by homeomorphisms on@. Show that
does not act properly discontinuously in three ways: (i) by showing that it does not

satisfy the de nition of a properly discontinuous group actions, (i) by nding a point x

such that ( x) is not discrete, (iii) by nding a point x such that Stab (x) is in nite.

Exercise 23.8
Naively, one might expect the intersection between a compdcset and a discrete set to be
nite. This is not the case, and it is easy to nd counterexamples. (Can you think of one?)

(i) Give an example of a metric spaceX, a group of homeomorphisms acting onX, a
point x 2 X and a compact setK such that ( x) is discrete but K \ ( x) is in nite.
(i) Suppose that is now a group of isometries.

Suppose that the orbit ( x) of x is discrete. Show that one can nd" > 0 such that
B-( (x))\ (x)=1 (x)gforall 2 . (Thatis, the " inthe de nition of discreteness
can be chosen to be independent of the point in the orbit.)

(i) Conclude that if acts by isometries, ( X) is discrete andK is compact thenK \ ( x)
is nite.
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24. Limit sets of Fuchsian groups

x24.1 Fuchsian groups

We rst recall the de nition of a Fuchsian group.

De nition. A subgroup < Meb( H) of Mebius transformations of H is called aFuchsian
group if it is discrete subset of Meb(H).

Thus if is a Fuchsian group and , 2 is such that 5! 2 then , = forall
su ciently large n.

Similar de nitions continue to hold for the Poincae disc m odel D of the hyperbolic
plane. A transformation : D 7! D of the form

(2) = %

where ; 2 Candj j2 j j2> 0is called aMebius transformation of D. The collection
of all such transformations is denoted by Meb(). There is no loss in assuming that
2 Meb(D) is normalised, namely that j j°> j j? = 1. A metric can be dened in a
similar way as in (12.2.2).
Let us recall some examples of Fuchsian groups.

Examples.

1. Thesubgroup = f 4] n(2)= z+ n; n2 Zg< Meb(H) of all integer translations
of H is a Fuchsian group.

2. The subgroup = f ,j n(2)=2"z; n2 Zg< Meb(H) is a Fuchsian group.

3. Let 2 R. Consider the subgroup = f "j (z)= €' z; n2 Zg of Meb(D). If
is rational then this is a nite group, and so a Fuchsian group. If s irrational then
this group is in nite; one can check that in this case is not a Fuchsian group.

4. The modular group

az+b
cz+d

PSL(2;Z)= z7! ja;b;c;d2 Z; ad bc=1 < Meb(H)

is a Fuchsian group.
5. Let g2 N. The levelq modular group

az+ b a;b;c;d2 Z; ad bc=1;
I ) L ) 1 )
27 cz+ d b;care divisible by q < Meb(H)

is a Fuchsian group.
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6. Let g2 N. The principal congruence subgroup of levely is the group

8 9
< az+ b a;b;c;d2 Z; ad bc=1; =

z7! 4 b; care divisible by q; < Meb(H)
cz a;d 1modq ’

is a Fuchsian group.

x24.2 Fuchsian groups and properly discontinuous group acti ons
The goal of this subsection is to prove the following result.

Theorem 24.2.1
Let be a subgroup ofMeb(H) (or Meb(D)). Then s a Fuchsian group if and only if
acts properly discontinuously onH (or D).

For convenience we will work inH. We rst need the following lemma.

Lemma 24.2.2
Fix zo2 Hand let K H be a non-empty compact set. Then

E=f 2Msb(H)j (z0)2Kg

(i.e. the set of all Mebius transformations of H that map zp into K) is a compact subset of
Meb( H).

Proof. Let SI(2;R) denote the group of 2 2 matrices with real coe cients and deter-
minant 1. Recall the map :SI(2;R)! Meb(H) given by

a b _
cd ~ A

where A 2 Meb( H) is the Mebius transformation of H with coe cient given by the matrix
A: aA(z)=(az+ b=(cz+ d). The map is continuous.

Let o b
a . azg+
2 SI(2;R 2 K
Then (E9 = E. If we can prove that E®is a compact subset ofSI(2; R) then it follows
that E, as the continuous image of a compact set, is a compact subsef Meb( H).
2 7! (& b;c;0).
Hence to prove that E%is compact it is su cient to prove that ECis closed and bounded.
Dene :SI(2;R)! H by

EC=

Now SI(2;R) can be regarded as a subset dR* (via the map

ab _azo+b.
c d czp+d

Then is continuous. Moreover, E®= 1(K). As K  H is compact, and so closed, it

follows that E%is closed.
As K H is compact, in particular it is bounded. Hence there existsM 1 > 0 such that
az+ b a b

M, for all

0
czp+d c d 2E-
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Moreover, asK  H is compact, it is bounded away from the real axis. Hence therexists

M, > 0 such that
azg+ b

2t M, for all i 3 2 EC
Now aze+ b 1
Im c§3+ g = iz + a2 Im(zp):
It follows that r
iczo + dj '”I\:Izo (24.2.1)
and r
jazo+ b M 'Tﬂzo (24.2.2)

Call the constants appearing on the right-hand side of (24.21) and (24.2.2) C; and C»
respectively, and note that they are independent ofa; b;c;d Let zg = Xo+ iyg. Then from
(24.2.1) we have that

(cxo+ d)? + ¢y = jezo+ d®  CF

from which it follows that jcj Cy=yp and so is bounded. We also have thajcxp+ dj Ci,
hence

C1 C1xo Ci ¢cxg d C; cxg Ci+ C1xo
Yo Yo
so that d is also bounded. From (24.2.2) it follows thata; b are also bounded. 2

We will also need the following technical property.

Proposition 24.2.3

Let be a subgroup ofMeb(H) that acts properly discontinuously on H. Suppose that
p2 His xed by some element of . Then there exists a neighbourhoodW of p such that
no other point of W is xed by an element of other than the identity.

In other words, if p is xed for some 2 then, near p, no other point is xed by any
non-trivial element of .

Remark. In particular, it follows from Proposition 24.2.3 that if a cts properly discon-
tinuously then there exists p 2 H such that (p) 6 pforall 2 nfidg. In Lecture 14
we use this property to give an algorithm that generates a fumlamental domain for a given
Fuchsian group.

Proof of Proposition 24.2.3. Suppose that (p) = pforsomep2Hand 2 , 6id.
Suppose, for a contradiction, that in any neighbourhood ofp there exists a xed point for
some non-trivial transformation in , i.e. there exists a sequence of distinct pointsp, 2 H
and , 2 nfidgsuchthatp,! pand n(p,) = pn. Hence , is an elliptic Mebius
transformation of H with a xed point at pp; hence the , are pairwise distinct.

Let B3 (p) be the closed 3-ball centred on p. This set is compact. From the de nition
of a properly discontinuous group action it follows that

f 2 j (p)2Bas(pg
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is nite. Hence only nitely many of the |, belong to this set. Hence there existdN; 2 N
such thatif n Nj then dy( n(p);p) > 3". Aspy! p, it follows that there exists N, 2 N
such that if n N> then dy(pn;p) <" . Choosen maxfNj;N2g. Then

du( n(p);p) du( n(P); n(Pn))+ du( n(pn);p)
= du(p;pn) + du(pn;p) 2

(as p is anisometry, and ,(pn) = pn), @ contradiction. 2

Exercise 24.1

Give a example of a metric space X;d) and a group of isometries that acts properly

discontinuously on X for which the conclusion of Proposition 24.2.3 fails, i.e. here exists a
point p 2 X which is xed by some non-trivial element of and for which th ere are points
arbitrarily close (but not equal) to p that are also xed under some non-trivial elements of
. (Hint: where did we use the fact that we are working with Me bius transformations in

the above proof?)

We can now prove Theorem 24.2.1.

Proof of Theorem 24.2.1. Let be a Fuchsian group. We prove that acts properly
discontinuously onH. Let z2 H and let K H be a non-empty compact set. Then

f 2 j(@2Kg=f 2Meb(H)j (2)2Kg\ : (24.2.3)

The rst set on the right-hand side of (24.2.3) is compact by Lemma 24.2.2, and the second
set is discrete. Hencd 2 | (z) 2 Kgis nite. Hence acts properly discontinuously.

Conversely, suppose that acts properly discontinuously kut is not discrete. By Propo-
sition 24.2.3 and the remark following it, there existsp 2 H that is not xed by any element
in other than the identity. As is not discrete, there exist s pairwise distinct , 2 such
that ! id. Hence (p)! pand L(p) & p.

Let U be any neighbourhood ofp. Then j(p) 2 U for suciently large n. Clearly

n(p) 2 n(U). Hence there exist innitely many , 2 such that ,(U)\ U 6 ;,

contradicting Proposition 23.3.2. 2

Recall that Lemma 23.3.1 says that a group acts properly disontinuously if and only
if each orbit is discrete and each stabiliser is nite. For Fuchsian groups, we do not need
to check that stabiliser of each point is nite (heuristical ly, this isn't surprising: for s in
Stab (z) if and only if z is a xed point of , and we know that Mebius transformations
have very few xed points).

Proposition 24.2.4
Let < Meb(H) be a subgroup of the Mebius group. Then the following are eqgivalent:

() acts properly discontinuously onH;

(i) for all z2 H, the orbit ( z) H is a discrete subset oH.

Proof.  We prove (i) implies (ii). If acts properly discontinuousl y then, by Lemma 23.3.1,
the orbit ( z) of every z 2 H is discrete.

Conversely, we prove (ii) implies (i). We work in D for convenience. By Lemma 23.3.1
we need only prove that the stabiliser of each pointzp 2 D is nite. Let 2 Stab (zp).
Then (zp) = zg, so that has xed point at zp; hence is either elliptic or the identity.
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Recall that a Mebius transformation of D is elliptic if and only if it is conjugate to a
rotation about 0 2 D. Thus Stab (zp) is conjugate to S, a subgroup of

f j (2=¢€' z; 2[01

That is, there exists g 2 Meb( D) such that gStab (z)g * = S. Suppose that Stab (zo)
is in nite. Then S is in nite and there exist in nitely many distinct ~ ; 2 [0; 1] for which
; 2 S. As [0;1] is compact, we can choose a convergent subsequengg ! , for
some 2 [0;1]. Fix any zz 2 D, z 6 0. Then  (z) ! (zy) asn ! 1 . Let
n=9"% . 92 Stab (z). Then (g 'z2)! g izl, so that the orbit of z; is not

discrete, a contradiction. 2

Remark. It is important to realise that Proposition 24.2.4 fails if we consider the orbit
of a point z 2 @H. For example, take =PSL(2 ;Z); this is a Fuchsian group. However, it
is easy to see that (0), the orbit of the point 0 2 @A, is equal to Q [flg , which is not
discrete.

In particular, we have the following important corollary.

Corollary 24.2.5
Let be a Fuchsian group and letz 2 H. Then ( z) has no limit points inside H.

Thus if ( z) has any limit points, then they must lie on the boundary.

x24.3 The limit set of a Fuchsian group

For convenience, we will work in the Poincae disc model of he hyperbolic plane. Let be
a Fuchsian group acting on the Poincae discD.
We will be interested in the orbit ( z) of a point z 2 D. We shall view ( z) as a subset
of D[ @. Note that
D[ @=fz2Cjjzj 1g

the closed unit disc in C. We give D[ @ the Euclidean topology: a sequence points
z, 2 D[ @ convergestoz2 D[ @ if jz, zj! Oasn!1 , wherej j denotes the
modulus of a complex number.

Remark. If we are working in D then dp(z,;2) ! Oifandonly if jz, zj! 0. However,

when we are working with limit sets we are often looking at corergence inD[ @. As

points on @ are an in nite distance away from points in D, it does not make sense to
consider convergence using the hyperbolic metri®.

De nition. Let be a Fuchsian group acting on the Poincae disc D and let z 2 D. Let
(( 2)) denote the set of limit points in D[ @D of the orbit ( z).

Remarks.

(i) Let z2 D. Thus a point 2 @ is an element of (( 2)) if: there exists , 2 such
that (2)! asn!l

(i) By Corollary 24.2.5, we know that for a Fuchsian group a ny limit point of ( z) lies
on the boundary. Thus (( z)) @D.
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It appears from the above de nition that the sets (( z)) depend on the choice of point
Z. This is not the case, as the following result shows.

Proposition 24.3.1
Let be a Fuchsian group and letz;;z, 2 D. Then

(C z)=(( 22)):

De nition. Let be a Fuchsian group acting on the Poincae disc D. We de ne the limit
set () of to be the set (( z)) for any z 2 D.

Proof. One can prove that the following formula holds for two points z;;z, 2 D:

jz1 2902

(1 zA) j 22j?)°
(Recall that Proposition 5.5.2 gives a formula for coshdy(z1;2z2) in the upper half-plane.

One can prove a similar formula in the Poincae disc using the same method.)
Let 2 . As is an isometry, it follows that

sinh? :—ZLdD(zl; 7)) =

sinh 2 :—ZLdD( (z1); (22))

j () () :
@ @A (22

sinh? %dD(zl; o)

Hence for any 2 we have
. . . ON1=2 .: 1 . .
(@) (@ @ ()7 sinh5do(z1; 22): (24.3.1)

Let 2 (( z1)). Weshowthat 2 (( z)).
As 2 (( z)), there exists a sequence of group elements, 2 such that ,(z1) !
asn!l . Consider (24.3.1) for p:

in) @i @ @) Sinh%dD(zl;ZZ): (24.3.2)

As 2 @, we have thatj n(z1)j!j j=21asn!1l . Itfollows from (24.3.2) that
n(z2) ! asn!l . Hence 2 (( 2z)). Thuswe have shownthat (( z1)) (( 2zp)).
By reversing z; and z, in the above argument, we see that (( z2)) (( 2z1)). Hence

(C z)=(( 22)). 2

Remark. There is, of course, a corresponding notion of limit set in tle upper half-plane
model of the hyperbolic plane. The de nition is as above (with D replaced by H), but a
small amount of care has to be taken when one de nes convergea in @ = R[flg . Let
us make this precise. Suppose that is a Fuchsian group actig onH and let z 2 H. We
saythat 2 R @A is alimit point of ( z) if there exists , 2 suchthat j ,(z) j! O
asn!l . Wesaythatl12 @A is a limit point of ( z) if for all K > 0 there exists 2
such thatj (z2)] K.

Recall the maph : H! D that we used in Lecture 6 to transfer results between the
upper half-plane and Poincae disc models of hyperbolic spce. Let < Meb(H) be a
Fuchsian group and let y() denote its limit set. Then h() < Meb(D) is a Fuchsian
group in the Poincae disc model with limit set  p(h()) = h( n()).
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Examples.

(i) Let us work in the upper half-plane model. Take = f | n(z2) =2"z; n 2 Zg.
Consider the pointi 2 H. Then ,(i)!1 asn!1 ,and ,()! Oasn!1l . It
is easy to see that ()= fO0;1g .

(i) Working again in the upper half-plane model, take to be the modular group
PSL(2;Z). Then ()= @H. We shall see several proofs of this later.

Exercise 24.2
In the upper half-plane, take = f ,j n(z)=z+ n; n2 Zg. Find ().

x24.4 Properties of the limit set

In this section we derive some basic properties of the limitst () of a Fuchsian group .
More speci cally, we shall see that () is a compact -invar iant subset of @D.

x24.4.1 Conjugate Fuchsian groups

Recall that we say that two Mebius transformations 1; » 2 Meb(H) of H are conjugate if
there existsg 2 Meb( H) such that , = g ! ;9. Recall that we think of conjugate Mebius
transformations as representing the same transformation bt with respect to di erent co-
ordinate systems.

De nition. Let 1 and , be Fuchsian groups. We say that 1 and » are conjugate if
there existsg 2 Meb( H) such that

=gt ig="fgtigj 12 10

Again, we think of conjugacy as a change of co-ordinates.
The following result relates the limit sets of conjugate Fudisian groups.

Proposition 24.4.1
Let 1 be a Fuchsian group and let , = g ! 1g be a conjugate Fuchsian group. Then

( 2=9M( )

Proof. Let 2 ( 1). Then there exists z 2 D and a sequence & 2 | such that

r(,l)(z) ! asn!1l . Notice that r(,z) =g! Sl)gz 2. Hence
P’y = g* Pag *2)
= g ' P@)
L g ()
so that

g '(C 1) (2

The reverse inequality follows similarly. 2

Remark. It follows from Proposition 24.4.1 that if 1 and » are conjugate Fuchsian
groups then their limit sets ( 1) and ( ) have the same cardinality. Moreover, they
have the same topological properties. This is because therpa 7! g ( ): @! @ is a
homeomorphism. When studying the limit set of a Fuchsian graip , it will often simplify
the analysis if we replace with a conjugate Fuchsian groupg ' g.
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x24.4.2 Basic topological properties

Proposition 24.4.2
Let be a Fuchsian group. Then the limit set () of is a closed subset ofdD.

Exercise 24.3
Prove Proposition 24.4.2: namely, show thatif , 2 ()and ! 2 @ then 2 ().

Corollary 24.4.3
The limit set of a Fuchsian group is compact.

Proof.  This is immediate from Proposition 24.4.2: () is a closed s ubset of the compact
set @ and therefore is itself compact. 2

x24.4.3 The action of on ().

Recall that a Mebius transformation 2 Meb( D) of D also acts on the boundary@. Thus
if 2 then (()= f ()j 2(0 g @.

Proposition 24.4.4
The limit set () is invariant under , namely (())= ()

Proof. We have to show that for 2 we have (())= ().

Let 2 (). Then there exist n 2 suchthat ,(2)! .Now ,2 as isa
group. Hence (2)! (). Hence ()2 (). Thus §0)) @F

By replacing by 1! in the above argument, we can similarly show that ()

()
Hence (()) = (). 2

Remark. In fact, one can show that () is the smallest -invariant subset of @D.
Namely, if C @ is a -invariant subset then C ().

x24.4.4 The cardinality of the limit set

We know that if is a Fuchsian group then () is a compact subs et of @. The purpose
of this section is to study the cardinality of (). We shall s how that () can have either
0, 1, 2 or in nitely many elements. Later on, we shall see thatif () is in nite, then it
must in fact be uncountable.

We begin with the following result. Recall that if is a parabolic or hyperbolic Mebius
transformation then has either 1 or 2 xed points in (). We show that if contains a
parabolic or hyperbolic element then the xed points must lie in ().

Proposition 24.4.5
Let be a Fuchsian group.

(i) Supposethat 2 is a parabolic Mebius transformation of D. Then the xed point
2 @ of is an element of ()

(i) Suppose that 2 is a hyperbolic Mebius transformation of D. Then the two xed
points 1; 22 @ of are elements of ()
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Proof. We work in the upper half-plane modelH for convenience. We prove (i). Suppose
that 2 is parabolic. By Proposition 10.3.1, is conjugate to a translation z 7! z + b,
b6 0. That is, there exists g 2 Mab( H) such that g 1 g(z) = z+ b. Then

gl"gz)=z+bnl12 @A
asn!l . Observethat = g(1) isthe unique xed point of . Then
"(9(2)) !

asn!l . Hence 2 (). 2

Exercise 24.4
Prove Proposition 24.4.5(ii).

Exercise 24.5
Let p;q2 Z, g6 0. Consider the Mebius transformation of H

(1+pdz p*

Pz+(1  po

Show that 2 PSL(2;Z). By considering the xed point(s) of , show that (PSL(2 ;2)) =
@H.

Proposition 24.4.6
Let be a Fuchsian group and let () be its limit set. Then () has either 0,1,2 or
in nitely many elements.

(2) =

Proof. Suppose that () is nite but has at least 3 elements. We show that this cannot
happen. Let C denote the nite collection of geodesics with end-points in (). As ()

(i) (ii)

Figure 24.4.1 : (i) The set C in the case of 3 points. (ii) The lines show the set of points
within distance M of the geodesic; the \triangle" in the middle illustrates the setC(M ).

is -invariant, it follows that C is also -invariant. Let M > 0 and let C(M) denote the
set of points that are within distance M of every geodesic irC:

C(M)=1fz2Djsupinf dp(z;x) Mg
L2C X2L
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Then, as C is -invariant and acts on D by isometries, we see thatC(M) is also -
invariant.

By choosing M su ciently large, we see that C(M) is not empty (draw a picture!).
Choose a pointzg 2 C(M).

As () has at least three elements, forany 2 C(M)\ @D there exists a geodesic
L 2 C which does not have as an endpoint.

Let z be a point near . Thenasz! , we have thatdp(z;L) =inf yo_ dp(z;x) !'1
Hencez 62C(M) if z is suciently close to . HenceC(M) is a bounded set, and in
particular is bounded away from @p.

As zp 2 C(M) and C(M) is -invariant, we must have that the orbit ( zp) of zg lies
in C(M), which is bounded away from @p. In particular, the orbit of zy cannot have any
limit points on the boundary @. But this contradicts the fact that () = ( Zp)\ @ has
at least three points. 2

We can classify Fuchsian groups by the cardinality of their Imit sets as follows:

De nition. We say that is elementary if () has nitely many elements. Otherwise,
we say that is non-elementary.

Exercise 24.6

Check that all three possibilities can occur: namely, write down examples of Fuchsian
groups o; 1; 2; 1 such that ( ;) has, respectively, 01,2;1 elements. (In a later
section we shall classify all Fuchsian groups for which () is nite.)
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25. Some algebraic properties of Fuchsian groups

x25.1 Cyclic groups

De nition. A group is said to be cyclic if there exists 2 such that
= f "jn2Zg

We say that generates, or equivalently that  is a generator for .

Exercise 25.1
Show that any cyclic group is abelian.

Examples.
1. The Fuchsian groups

f (2=z+njn2Zg
f n(2)=2"zjn2 Zg

are cyclic; the rstis generated by z 7! z+ 1 and the second is generated by 7! 2z.
2. The Fuchsian group
= f W(2)= %" zjk=0;1;:::;n 1g
is a cyclic group. It is generated byz 7! €™=" z.

In particular, we see that a cyclic group may be nite.
The following easily-proved result says that discrete subgpups of the real line and the
circle (both thought of as additive groups) are cyclic.

Lemma 25.1.1
() Any non-trivial discrete subgroup of R is an in nite cyclic group.

(i) Any non-trivial discrete subgroup of the unit circle S'is a nite cyclic group.

Exercise 25.2

Prove Lemma 25.1.1. (Hint: Suppose that < R is a discrete subgroup. Choose an element
0<y 2 such that no other element of lies between 0 and y (why does such an element
exist?). Show thaty generates .)
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x25.2 Centralisers and applications to abelian Fuchsian gro ups
De nition. Let be a group and let 2 . The centraliser C ( ) is the set of all
elements in that commute with , i.e.

C()=fg2 jg = g9gg

Thus is abelian if and only if C ( )= for all 2.

Let 2 Meb(H) be a Mebius transformation of H. We are interested in calculating the
centraliser Cypp( 1y( ) of in Meb( H). This will allow us to calculate all abelian Fuchsian
groups.

Recall that a point z2 H[ @ is a xed point of 2 Meb(H) if (z)= z.

Lemma 25.2.1
Let 2 Meb(H) and let g2 Cyep(ry( ). Then z is a xed point of if and only if g(z) is
a xed point of

Exercise 25.3
Prove Lemma 25.2.1

Let 2 Meb(H) and let us calculate the centraliser Cyyp 1y( ) of in Meb( H). We
consider three cases: is parabolic, hyperbolic or elliptic.

Let 2 Meb(H) be a parabolic Mebius transformation of H. By replacing with a
conjugate transformation, we may assume that has its unique xed point at 1 and is
either the translation (z)= z+1or (z)= z 1 (compare with Proposition 10.3.1). We
will consider the case when (z) = z +1; the case when (z) = z 1 is exactly the same.
Let 92 Cypp( Hy( ) commute with . By Lemma 25.2.1,9(1 ) = 1 . Henceg(z) = az+ b
(see Lecture 10). Now

az+ a+b
az+ b+1

g (2
g(2)

and comparing coe cients shows that a=1. Hence
Cmon(ny( )= fg(z) = z+ bjb2 Rg;
the group of all translations.

Exercise 25.4
() Consider the hyperbolic transformation (z) = kz. Show that Cypp H)( ) is the set
of all dilations f (z)= z j > 0Og.

(i) Consider the elliptic transformation (z) = €' z of D. Show that Cweb( D)( ) is the
set of all rotations around 02 D.

Combining the above exercise with Propositions 11.2.1 and1.3.1, we have the following
results.

Proposition 25.2.2
Two Mebius transformations commute if and only if they have the same set of xed points.
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Proposition 25.2.3
() The centraliser Cypp 1y( ) in Meb(H) of a parabolic element 2  consists of all
parabolic transformations with the same xed pointin @1 as .

(i) The centraliser Cypp(1y( ) in Meb(H) of an elliptic element 2  consists of all
elliptic transformations with the same xed pointin H as .

() The centraliser Cypp 1y( ) in Meb(H) of a hyperbolic element 2  consists of all
hyperbolic transformations with the same two xed points in @4 as .

The next two results tell us that the only abelian Fuchsian groups are cyclic.

Proposition 25.2.4
Let be a Fuchsian group. Suppose that every element 2 nfldg has the same set of
xed points. Then s cyclic.

Proof. As every non-identity element of has the same set of xed points, all non-
identity elements must be of the same type: they must either ke all parabolic, all elliptic
or all hyperbolic.

Suppose that contains only parabolic elements that x the same element, together
with the identity. Replace with a conjugate subgroup so that the xed pointis 1 . The
only transformations that x have 1 as the unique xed point are the translations. Hence

is a discrete subgroup of the group of translationsfz 7! z+ b; b2 Rg, which is isomorphic
to R. By Lemma 25.1.1, is cyclic.

Suppose that all the non-identity elements of are hyperbolic and have the same set of
xed points. By replacing by a conjugate group, we may assume that the xed points are
Oand1l . The only transformations that x bothOand 1 are the dilationsz 7! kz. Hence
is a discrete subgroup of the group of all dilationsfz 7! kz j k > Og, i.e. the multiplicative
group of positive reals. The multiplicative group of positive reals is isomorphic to the
additive group of reals (via the isomorphismx 7! logx). By Lemma 25.1.1, is cyclic.

Working in D, suppose that contains only elliptic elements that x the s ame element.
Replace with a conjugate subgroup so that the xed pointis 0 2 D. The only transfor-
mations that x only O are the rotations. Hence is a discrete subgroup of the group of
rotations fz 7! €2’ z; 2 [0;1)g, which is isomorphic to the unit circle. By Lemma 25.1.1,

is cyclic. 2

Proposition 25.2.5
Let be an abelian Fuchsian group. Then is cyclic.

Proof. Let be an abelian Fuchsian group. Then by Proposition 25.22 every element
has the same set of xed points. By Proposition 25.2.4 it folbws that is cyclic. 2

Corollary 25.2.6
No Fuchsian group is isomorphic to the additive groupz? = f(n;m) jn;m 2 Zg.

Proof. The group Z? is abelian but not cyclic. 2

Exercise 25.5
Let be agroup and let H < be a subgroup. We de ne

N (H)=fg2 jgHg '=Hg
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to be the normaliser of H in . That is, the normaliser of H is the largest subgroup of
in which H is a normal subgroup.

(i) Check that N (H) is a subgroup of .

(i) Let < Meb(H) be a non-abelian Fuchsian group. Prove thatN ey H)() is also a
Fuchsian group.

(Hint: Suppose not. Consider a sequence of elements dfy,, 1) () that converges
to the identity.)
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26. Classifying elementary Fuchsian groups

We have seen that if is a Fuchsian group then () can have eit her 0, 1, 2 or in nitely
many elements. In this section we shall classify preciselyhiose Fuchsian groups which have
a nite limit set.

x26.1 The case when card ()=0

Here we analyse the case when () = ;. We shall show that this happens if and only if
is a cyclic group generated by an elliptic element. We need he following preparatory
result.

Proposition 26.1.1
Let be a Fuchsian group. Suppose that all elements of , other than the identity, are
elliptic. Then all the elliptic transformations have a common xed point.

Proof. Let 2 nfldgbe elliptic. Then has a unique xed point z 2 H. To prove the
theorem we have to show that every element of has the same xé point.
We work in the Poincae disc D. Let 2 nfldg. Then has a unique xed point in
D. By replacing with a conjugate group, we can assume that this xed point occurs at
0. Then has matrix
0

with j j=1.
Letg2 , g6 . We show that g also has a xed point at 0. Let g have matrix

with ¢ 92C,j 92| 92=1.
Consider the commutator [;g]= g g 2 . A straightforward calculation shows
that this has matrix

i3 92 392 200j j2o00
200j oo g 39
Recalling that j j =1, the trace of [ ;g] is given by the square of:
TS RS I R I
Asj 92 j 9%2=1, we see that the trace of [;g] is the square of
2+) P 2+2 H=2j P )%
Recall that =2iIlm( ). Hence, the trace of [;g] is the square of

2+4j 3%(Im( )=
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As does not contain any hyperbolic elements and [;g] 2 , we must have that [ ;g] is
not hyperbolic. In particular, the trace of [ ;g] is at most 4. Squaring the above quantity,
we see that this can only happen if either Im()=0or °=0.
If Im( ) =0then = sothat is equal to the identity, a contradiction. Hence
0=, so that g xes the point 0. Hence every element of has the same xed pont. 2

Corollary 26.1.2
Suppose that all elements of , other than the identity, are elliptic. Then the limit set ()

is empty.

Proof. By Proposition 26.1.1 we know that there exists a common xedpoint z 2 D such
that (z)= zforall 2 . Hence the orbit of z under is equal to fzg. Hence ()= ;.
2

The converse to Corollary 26.1.2 is true.

Corollary 26.1.3
Let be a Fuchsian group and suppose that() = ;. Then s a cyclic abelian group
generated by an elliptic element.

Proof.  This is merely assembling facts that we have already provedni the correct order!
Suppose that () = ;. By Proposition 24.4.5, contains only elliptic elements and
the identity. By Proposition 26.1.1, there exists a common xed point. By replacing by
a conjugate group, we can assume that this xed point is the oigin. Hence each element of
is of the form z 7! €2' z, and so can be viewed as a subgroup of the circle. By Lemma
25.1.1, it follows that is a nite cyclic group. 2

x26.2 The case when card ()=1

Here we analyse the case when () has exactly one element. Weshall show that this
happens if and only if is an in nite cyclic group generated by a parabolic element.

Proposition 26.2.1
Let be a Fuchsian group and suppose that() = f g. Then is of the form

= f "jn2Zg;

for some parabolic 2 ,i.e. is an in nite cyclic group generated by a parabolic trans-
formation.

Proof. Let be a Fuchsian group and suppose that the limit set () co ntains only a
single element 2 @. By Theorem 24.4.4 we know that () is -invariant. Hence if

2 then we have that () = . Thus each element of xes . In particular, this
implies that there are no elliptic transformations in .

We show that does not contain a hyperbolic element. Recall that a hyperbolic Mebius
transformation of D has two xed points in @ and that these xed points lie in (). As
we are assuming that () contains only one point, this canno t happen.

Hence contains only parabolic elements and the identity. By working in the upper
half-plane and replacing by a conjugate subgroup, we may asume that () = flg
@H. The only parabolic Mebius transformations of H that have 1 as a xed point are
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translations of the form z 7! z + b for someb2 R. Hence is (conjugate to) a subgroup
offz7! z+ bj b2 Rg which is isomorphic to R. By Lemma 25.1.1, it follows that is a
cyclic abelian group generated by a parabolic Mebius trangormation of H. 2

Exercise 26.1
Prove the converse to Proposition 26.2.1, namely that if is an in nite cyclic group gener-
ated by a parabolic element then (') has one element.

x26.3 The case whencard ( )= 2

Finally, suppose that () has two elements. Indeed, let ( )= f 1; »0. Recall that
acts on (). Hence each element of maps 1 to either 1 orto », and similarly » is
mapped to either , orto ;. This observation allows us to classify Fuchsian groups fo
which the limit set () contains two elements.

Proposition 26.3.1
Let be a Fuchsian group and suppose that() has two points. Then either

(i) is an in nite cyclic group generated by a hyperbolic transformation, or

(i)  is conjugate to a Fuchsian group generated by
z7' kz;z 7! }
z

for somek > 1.

Proof. Let ()= f 1; 20. There are two cases.

Case 1. Supposethat ( ;)= i1forall 2 . Then ()= ,forall 2 . Hence each

2 xes both 1 and »; therefore each element of is hyperbolic. By replacing by
a conjugate subgroup, we may assume that; =0, > = 1 . A hyperbolic transformation
that xes 0 and 1 is of the form z 7! kz for somek 2 R. Hence is conjugate to a
subgroup of the formfz 7! kz j k 2 Rg, which is isomorphic to R. By Lemma 25.1.1, it
follows that is an in nite cyclic group generated by a hyper bolic element.

Case 2. Now suppose that there exists 2 suchthat ( 1)= ».

In this case, each element of either xes both ; and , or interchanges them. If 2
xes both 1 and ;, then is hyperbolic.

Suppose that 2 interchanges 1 and .. Then 1; » are not xed points of . If

were hyperbolic or parabolic then then would have at least one xed point in @ not

equal to 1 or » and this xed point would lie in (). This is a contradiction . Hence
must be elliptic.

By working in the upper half-plane model and replacing with a conjugate subgroup,
we may assume that 1 =0 and , = 1 . Hence any hyperbolic element 2 is of the
form z 7! kz and any elliptic element is of the formz 7! 1=z 2
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27. Non-elementary Fuchsian groups

We have seen that a Fuchsian group has either 0, 1, 2 or in nity many elements in its
limit set. In this section we brie y discuss the case where tte limit set is in nite. The
following result says that in this case the limit set is in fad uncountable.

Theorem 27.0.2
Let be a Fuchsian group. Then () has either 0,1,2 or uncountably many elements.

Proof. Omitted. See Katok's book. 2

Recall that a Fuchsian group is said to be non-elementary if the limit set () contains
in nitely many (equivalently, uncountably many) elements .

Exercise 27.1
Suppose that is a hon-elementary Fuchsian group. Prove tha must contain a hyperbolic
element.

(Hints: First argue that, apart from the identity, either ¢ ontains only hyperbolic
elements (in which case the statement follows trivially) or that it contains a parabolic
element. By replacing by a conjugate subgroup, we can assum that a parabolic element

1 has1l as a xed point and so has the formz 7! z+ b. If , is another element of ,
consider ( 2 1) for large n.)

Before we can discuss the structure of a non-elementary Fusiean group further, we
need the following topological concepts.

De nition. Let (X;d) be a metric space. A subsety X is said to be perfect if it is
closed and every point ofY is a limit point of Y.

De nition. Let (X;d) be a metric space. A subsety X is said to benowhere densef
X nclY is dense,i.e. the complement of the closure ofY is dense.

Remarks.

() If Y is already a closed set, thenY is nowhere dense if and only if the complement
X nY is dense.

(i) One can often think of nowhere dense sets as sets that ar&opologically small' in
the same way that sets of measure zero are ‘measure-theoeslly' small. (However,
the two notions are independent in the sense that there are nwhere dense subsets of
[0; 1] that have Lebesgue measure 1.)

Examples.

() Let X = RandtakeY = fl=njn 2 Ng[f Og. Then ( Y)= f0Og so that Y is not
perfect.
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(iii) The middle-third Cantor set (the de nition of which is  given below) is a perfect subset
of R.

A non-elementary Fuchsian group has uncountably many elem@s. For example, the
modular group has limit set equal to the entire boundary, which is clearly uncountable.
The following result says that there are essentially two types of behaviour: either the limit
set is the entire boundary, or it is a Cantor set. A Cantor set is de ned to be a perfect
nowhere dense subset of a metric space. The most well-knowrample of a Cantor set is the
middle-third Cantor set C. The middle third Cantor set is de ned by starting with the un it
interval [0; 1] and removing the middle third interval leaving the set C; = [0; 1=3][ [2=3;1];
these two intervals then have their middle thirds removed, kaving four sub-intervals C,.
Inductively, this is repeated so that C, is obtained from C, ; by removing the middle
thirds of the 2" intervals comprising C,, 1. Then C =\ %:1 Ch.

Theorem 27.0.3
Let be a Fuchsian group and suppose that() is in nite. Then either

@ ()= @,or

(i) () is a perfect, nowhere dense subset @@.

Proof. Omitted. See Katok's book. 2

x27.1 Fuchsian groups of the rst and second kind

Let be a Fuchsian group with limit set (). Then heuristica lly there are two cases:
either () is "big' and is equal to @, or else () is 'small' and has either 0,1,2 elements
or is a Cantor set.

De nition. Let be a Fuchsian group. We say that is a Fuchsian group of the rst
kind if ()= @. Otherwise we say that is a Fuchsian group of the second kind

Remark. In particular, if is an elementary Fuchsian group then is o fthe second kind.
However, there are many other examples of non-elementary Finsian groups that are of the
second kind.

x27.2 Fuchsian groups of the rst kind

Recall that a Fuchsian group is said to be of the rst kind if it s limit set is equal to the
whole of the boundary of D.

Recall also the notion of a fundamental domain. We say that anopen subsetF  H is
a fundamental domain for a Fuchsian group if

.S
i , (cl(F))=H,
(i) the images (F) are pairwise disjoint; thatis, 1(F)\ 2(F)=;if 16 .

We saw in Lecture 15 that every Fuchsian group has a fundamemt domain. Indeed we gave
a method for constructing a fundamental domain, namely the Drichlet polygon. Also, recall
Proposition 13.2.1; this says that any two fundamental domans have the same hyperbolic
area.
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In this section, we state two theorems that essentially say hat a Fuchsian group is
of the rst kind if and only if a (hence all) fundamental domai n has nite area. For the
rst theorem we need to make an additional technical assumpion that the group is
geometrically nite ; this means that the Dirichlet polygon has nitely many side s.

Theorem 27.2.1
Let be a(geometrically nite) Fuchsian group of the rstkind. T hen has a fundamental
domain of nite hyperbolic area.

The converse to this theorem (which does not need the assumigin of the group being
geometrically nite) gives us another method for calculating limit sets.

Theorem 27.2.2
Let be a Fuchsian group. Suppose that there exists a fundamentalomain with nite
hyperbolic area. Then is a Fuchsian group of the rst kind.

Example. Consider the modular group PSL(2Z). One I5u_ndamental domain for this
group is the hyperbolic triangle with vertices at 1 , ( 1+ i 3)=2. By the Gauss-Bonnet
Theorem this has nite hyperbolic area = 3 (the internal angles are respectively 0 = 3; = 3).
By Theorem 27.2.2, we see that the limit set (PSL(2;Z)) of the modular group is equal
to @H.

x27.3 Fuchsian groups of the second kind

Recall that a Fuchsian group is said to be of the second kind ift is not of the rst kind!
This means that the limit set is not equal to the entire boundary @4. There are two
possibilities:

(i () is a nite set, that is is an elementary group, or
(i) () is a Cantor set, namely a perfect, nowhere dense subset of @GH.

We can use a version of Poincae's Theorem to generate exantgs of Fuchsian groups
which have Cantor sets as their limit sets. Recall from Lectues 20 and 21 that Poincae's
Theorem has the following form. We have a hyperbolic polygorD equipped with a set of
side-pairing transformations and we assume thaD has no free edges, i.e. no arcs @ form
a side ofD. We can then calculate the elliptic cycles and parabolic cyles. Poincae's The-
orem says that if each elliptic cycle satis es the elliptic ¢/cle condition and each parabolic
cycle satis es the parabolic cycle condition then the sidepairing transformations generate
a Fuchsian group which has D as a fundamental domain.

We will need a version of Poincae's Theorem that generaligs the above to the cases
where we include the possibilities that

(i) the polygon is allowed to have free edges, and

(i) the side-pairing transformations could be arbitrary i sometries (and not just Mebius
transformations).

Before stating this version of Poincae's Theorem, let us dgress and discuss the group
of all isometries of H. Consider the map (z) = z de ned on H; this is a re ection in
the imaginary axis. It is easy to check from the de nition of hyperbolic length that is an
isometry. However, it is not a Mebius transformation. Note that reverses orientation.
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In general, a re ection in any geodesic is an isometry. One aaprove the following facts
(see Beardon, for example):

(i) The composition of two re ections in two di erent geodesics is a Mebius transforma-
tion. (Indeed, the composition is elliptic, parabolic or hyperbolic if and only if the
two geodesics intersect inD, intersect in @, or are disjoint, respectively.)

(i) The group of orientation preserving isometries is pregsely the set of Mebius transfor-
mations.

(iii) The set of orientation reversing isometries is precigly the set given by composition of
a re ection in a geodesic with a Mebius transformation (which could be the identity).

(iv) We let
Isom(D) = fall isometries of Dg

denote the group of all isometries ofD. Then Meb(D) is a subgroup of index 2 in
Isom(D).

Let D be a convex hyperbolic polygon, possibly with free edges. Wassume that
each sides of D is equipped with a side-pairing transformation s. Here we will allow
any isometry of H to be a side-pairing transformation; in particular, we allow side-pairing
transformations to be orientation reversing (for example, a re ection in a geodesic). We
will also require the isometry ¢ to act in such a way that, locally, the half-plane bounded
by s containing D is mapped by s to the half-plane bounded by ¢(s) but opposite D. We
assume that each free edge is paired with itself by the idernty map. Given a vertex and a
side with an end-point at that vertex, we can follow the procedure described in Lecture 18
and Lecture 21 to construct a cycle of vertices and an assodiad cycle transformation. We
say that

() a vertex v 2 H belongs to anelliptic cycle (which we calculate as in Lecture 18),

(i) a vertex v 2 @ belongs to aparabolic cycle if the parabolic cycle constructed in
Lecture 21 does not contain a vertex that is the end-point of afree edge,

(i) a vertex v 2 @A belongs to afree cycleif the parabolic cycle constructed in Lecture 21
does contain a vertex that is the end-point of a free edge.

If v is a vertex ands is a side with an end-point at v, then we denote the corresponding
cycle transformation by .s. This is a composition of orientation preserving isometries
(i.e. Mebius transformations) and orientation reversing isometries (i.e. the composition of
a Maebius transformation with a re ection in a geodesic). One can easily check that ifv is a
vertex on either an elliptic or parabolic cycle then .5 contains an even number of orienta-
tion reversing isometries; hence s is orientation preserving, i.e. a Mebius transformation.

We state the following form of Poincae's Theorem.

Theorem 27.3.1 (Poincae's Theorem in the case of free edge S)

Let D be a convex hyperbolic polygon, possibly with free edges. $pose thatD is equipped
with a collection G of side-pairing hyperbolic isometries, possibly orientaion reversing.
Suppose that each free edge is paired with itself via the iddity. Suppose that

(i) each elliptic cycle satis es the elliptic cycle condition, and
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(i) each parabolic cycle satis es the parabolic cycle condion.

Then the subgroup hGigenerated by G is a discrete subgroup oflsom(H).

Remarks.

1. If the side-pairing transformations are Mebius transformations, then D is again a
fundamental domain for hGi

Suppose that some of the side-pairing transformations arergentation reversing isome-
tries. Then the set o = hGi\ Meb(H) of all orientation preserving transformations
in hGiis a Fuchsian group. We can nd a fundamental domain for ¢ as follows: Let

2 hGi be any orientation reversing isometry. ThenDo= D[ (D) is a fundamental
domain for .

2. Suppose that all vertices lie on the boundary and every vdex is the end-point of
a free edge. Then, as every vertex must belong to a free cycleéhe side-pairing
transformations generate a discrete subgroup of IsomH). Again, the group ¢ =

\ Meb( H) of all orientation preserving elements of is a Fuchsian group.

Example. Consider the hyperbolic quadrilateral Q pictured in Figure 27.3. Let i be

S3

Sy

Figure 27.3.1 : The side [A; D] is paired to itself by a hyperbolic transformation followed
by a re ection; as is the side B;C]

the orientation reversing isometry given by the composition of a hyperbolic transformation
with xed points at A;D 2 @ with a re ection in the geodesic [A;D]. Then 1 pairs the
side |A; D] to itself, and maps the half-plane determined by RA; D ] that contains Q to the
half-plane oppositeQ. Thus ; is a side-pairing transformation. Similarly, we take » to
be the composition of a hyperbolic transformation with xed points at B;C 2 @ and a
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re ection in the geodesic B; C]; then 5 is also a side-pairing transformation that pairs the
side B; C] with itself.
The cycle containing the vertex A is given by:

A (1 A | A
S1 | S1 | Sy
id A A
! Sy ! )

As this contains the free edges,, this is a free cycle. Similarly, the verticesB; C; D all belong
to free cycles. Hence there are no elliptic cycles and no pabalic cycles. By Poincae's
Theorem, ;; 2 generate a discrete subgroup of Isonty).

Let = hq; 2i\ Meb(D) denote the subgroup of Mebius transformations inh 1; »i.
Then is a Fuchsian group. By the rst remark above, there is a fundamental domain D
for that contains Q. As Q has in nite area, we see thatDg also has in nite area. Hence

must be a Fuchsian group of the second kind. Hence () has either 0;1;2 elements or
is a Cantor set.

Now contains the hyperbolic Mebius transformation  2; this has xed points at A
and D. HenceA;D 2 (). Similarly, contains the hyperbolic Mebius transfo  rmation

2 which has xed points at B;C; henceB;C 2 (). Hence () contains at least four
points. Hence () is a Cantor set.

Example. Here is a speci c example related to the above constructionLet
7z 6
3z

>

1(2)=4z; 2(2)=

We claim that 1; » generate a Fuchsian group with a Cantor set as its limit set.

To see this, rst observe that ; has xed points at 0;1 and that , has xed points
at 1;2. Thus the limit set of the group = h ;; »i generated by 1; » contains at least 4
points, hence it contains uncountably many points. It remains to check that is a Fuchsian
group of the second kind.

De ne
3z 2

z

3(2)=2z; 4(2)=
2

and observe that 5= 1 and } = ,. Let ; denote the re ection in the imaginary axis,
and let , denote the re ection in the geodesic [12]. Let 5= 13, = 2 4. Then

5 and g satisfy the hypotheses of the previous example. Therefores and ¢ generate a
discrete subgrouph s; i of Isom(H).

It is straightforward to see that § = ,and g = 5. Hence the subgroup = h 1; Ji
is a subgroup ofh 5; gi. Ash 5; &i is discrete, must be discrete. As consists of Mebius
transformations, is a Fuchsian group.

Finally, observe that the hyperbolic quadrilateral Q with vertices at 0;1;2;1 and free
edges between vertices;@ and 21 has in nite hyperbolic area. Moreover, Q is contained
in a fundamental domain D for h 5; gi\ Meb(H). HenceD also has in nite hyperbolic
area. As is a subgroup of h5; i\ Meb(H), one can see (see Proposition 13.2.2) that
any fundamental domain for must also have in nite area (ind eed, has index 2 in
h s; i\ Meb(H)). Hence by Theorem 27.2.1, is a Fuchsian group of the secaah kind.
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x27.3.1 Further developments

There are many other results regarding Fuchsian groups andteir limit sets that one can go
on to study. For example, if is a Fuchsian group of the secondkind with an uncountable
limit set (), then it is a Cantor set (namely, a perfect, now here dense subset). One can
show that in this case () has an extremely complicated stru cture; indeed it is a fractal
set. Recall that one way of de ning a fractal set is as a set wih a non-integer dimension
(the dimension of a point is 0, the dimension of a line is 1, efc One way of associating a
“dimension’ to this set is via its Hausdor dimension. One ca give an explicit formula for
the Hausdor dimension of the limit set.
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28. Where we could go next

x28.1 Final remarks about the course

Below are some remarks about which parts of the course are exdnable:
Anything covered in the lectures is examinable.

The exercises are examinable, apart from those that are exigiitly stated as being non-
examinable. I've indicated which exercises are particuldy important. The exercises
(including those that are deemed important) may change fromone year to the next.

There are some topics covered in the lecture notes that | eiter skimmed over very
briey in the lectures or omitted completely; these (together with any exercises on
these topics) are not examinable. Again, which topics are oftted may change from
one year to the next. In particular, | did not do the lecture on hyperbolic trigonometry

this year, and the material in this lecture is not examinable

The statements of all the major theorems and propositions tkat | covered in the
lectures are examinable, as are their proofs.

There are several past exam papers on the course website; ghyear's exam is similar in
spirit to previous years'. Section A contains four compulsey short-answer questions
worth a total of 40 marks. Section B contains three longer qustions each worth 30
marks, of which you must do two. The 15-credit exam contains a extra Section C,
containing three questions worth 50 marks in total.

There is a .pdf le on the course webpage which gives a non-edustive list of
commonly-made mistakes in the exam in previous years. Pleasread this and don't
make the same mistakes yourself!

Finally, none of the material covered in this lecture is exaninable!

x28.2 Compact surfaces

In Lecture 22 we saw how, giveng 2, we could construct a Fuchsian group such that
H= is a torus of genus g (i.e. we constructed a Fuchsian group with signature ¢; )). Thus
we can generate a large number of surfaces using hyperboliegmetry. The following two
theorems say that, in some sense, most surfaces arise fromgwgrbolic geometry. Below,
you may think of “compact' as meaning “closed and bounded'. Mreover, the boundary of
the surface can be thought of as its “edge’; thus the cylindej0; 1] S* has a boundary (the
two circles at the ends), whereas a torus does not have a bouady.

Theorem 28.2.1 (Mebius Classi cation Theorem (1863))
Let S be a compact orientable surface and suppose the does not have a boundary. Then
S is either:
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(i) a sphere,
(i) a torus of genus 1, or
(i) atorus of genusg, g 2

In particular, all but two compact orientable surfaces with out boundary arise from hyper-
bolic geometry.

You may have met curvature in other courses, such as Di erenial Geometry. Curvature
measures the extent to which space is curved, and in which déction it is curved. The
following, known as Diquet's formula, gives a formula for the curvature of a surface at a

point. We de ne
x) = lim 12 r? Arei(B(x;r))
rt 0 r

whereB(x;r) = fy 2 Sj d(x;y) <r g denotes a ball of radiusr in S. Then one can see
that (with the usual notion of distance) a sphere has curvatue +1, a torus of genus 1 has
curvature 0, etc. The following theorem gives a more precisdescription of all surfaces with
constant curvature.

Theorem 28.2.2 (Poincae-Koebe Uniformisation Theorem ( 1882, 1907))

Let S be a compact orientable surface of constant curvature and wvtlhout boundary. Then
there exists a covering spaceM with a suitable distance function and a discrete group of
isometries of M such that S is homeomorphic toM= . Moreover,

() if S has positive curvature thenM is a sphere,
(i) if S has zero curvature thenM is the plane R?,
(iii) if S has negative curvature thenM is the hyperbolic planeH.

The generalisation of this result to studying 3-dimensiona surfaces' is called the Thurston
Uniformisation Conjecture. It is an important open problem in mathematics that is a topic
of major current research interest.

x28.3 Higher-dimensional hyperbolic space

Throughout this course we have studied the hyperbolic plane Thus we have studied two-
dimensional hyperbolic geometry. We could go on to study higer-dimensional hyperbolic
geometry.

We can de ne n-dimensional hyperbolic space as follows. Let

and let
@" = f(X1;%X2;::0;Xn 1;0)j X151 %n 12 Rg:
Thus H" is an n-dimensional hyperbolic analogue of the upper half-planéd and @H" is an
n-dimensional analogue of the boundary oH.
We can again de ne distance inH" by rst de ning the length of a (piecewise di er-
entiable) path, and then de ning the distance between two pdnts as the in mum of the
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length of all (piecewise di erentiable) paths between them If = ( 1;:::; n):[a;h! H"
is a piecewise di erentiable path then we de ne

2oy )k
a n(t)

9t)2+ + 9(t)2. Then for z;w 2 H" de ne

dt

Iengtth ( ) =
p

wherek qt)k =
dun (z;w) = inf flengthyn () j is a piecewise di erentiable path from z to wag:

We can then go on to study and classify the higher-dimensionaviebius transformations.
We can study discrete subgroups of these groups, and formuia a version of Poincae's
Theorem. We could also go on to study higher dimensional hypdolic “surfaces' by taking
H" and quotienting it by a discrete group. This gives us an extrenely powerful method of
constructing a very large class of geometric spaces with magninteresting properties, many
of which are still topics of current research.
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29. All of the exercises

x29.1 Introduction

The exercises are scattered throughout the notes where thegre relevant to the material
being discussed. For convenience, all of the exercises aresan below. The numbering
convention is that Exercise n:m is the mth exercise in lecturen. Thus, once we've done
lecture n in class, you will be able to do all the exercises humbered:m.

Particularly important exercises are labelled . Particularly unimportant exercises,
notably those that are there purely for completeness (such & proving that a given de nition
makes sense, or illustrating a minor point from the lecture$ are labelled[. (Caveat: this is
purely to help you focus your revision, do not read too much ito the distinction between
starred and unstarred exercises!)

Remember that:

The 10-credit MATH32051 version of the course consists of tgures 1{22, 28.

The 15-credit MATH42051/62051 version of the course consis of lectures 1{28.

X29.2 The exercises

Exercise 1.1 |

Let R denote the 2 2 matrix that rotates R? clockwise about the origin through angle
2 [0;2 ). Thus R has matrix

cos sin
sin  cos

Let a=(a;;ay) 2 R2. De ne the transformation

T.a:R?2! R?
by
T. X _ cqs sin X . @& ;
' y sin  cos y a

thus T .5 rstrotates the point ( x;y) about the origin through an angle and then translates
by the vector a.
Let G=fT,j 2[0;2);a2R?%.

() Let ; 2[0;2 )and let a;b2 R2. Find an expression for the compositionT .5 T .
Hence show thatG is a group under composition of maps (i.e. show that this prodict is
(a) well-de ned (i.e. the composition of two elements ofG gives another element ofG),
(b) associative (hint: you already know that composition of functions is associative),
(c) that there is an identity element, and (d) that inverses exist).
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(i) Show that the set of all rotations about the origin is a subgroup of G.
(i) Show that the set of all translations is a subgroup of G.

One can show thatG is actually the group Isom" (R?) of orientation preserving isometries
of R? with the Euclidean matrices.

Exercise 2.1
Consider the two parametrisations

1:00;2]Y H @ t7V i+
2 [1;2]0 H 1t 7 (2 )+

Verify that these two parametrisatiq_gs de ne the same path
Let f (z) =1=Im(z). Calculate f using both of these parametrisations.
The point of this exercise is to show that we can often simplif calculating the integral
f of a function f along a path by choosing a good parametrisation.

Exercise 2.2
Consider the pointsi and ai where O<a< 1.

(i) Consider the path  betweeni and ai that consists of the arc of imaginary axis
between them. Find a parametrisation of this path.

(i) Show that
length,( ) =log 1=a:

(Notice that as a! 0, we have that log¥a!1 . This motivates why we call R [ flg
the circle at in nity .)

Exercise 2.3
Show that dy satis es the triangle inequality :

du(x;z)  du(X;y) + du(y;2); 8 x;y;z 2 H:
That is, the distance between two points is increased if one @es via a third point.

Exercise 3.1
Let L be a straight line in C with equation (3.3.2). Calculate its gradient and intersedions
with the real and imaginary axes in terms of ; ;

Exercise 3.2
Let C be a circle in C with equation (3.3.2). Calculate the centre and radius ofC in terms
of ;;

Exercise 3.3
Let be a Mebius transformation of H. Show that mapsH to itself bijectively and give
an explicit expression for the inverse map.

Exercise 3.4

Prove Proposition 3.5.1 [that the set of Mebius transformations of H form a group under
composition]. (To do this, you must: (i) show that the compostion 1 , of two Mebius
transformations of H is a Mebius transformation of H, (ii) check associativity (hint: you
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already know that composition of maps is associative), (i) show that the identity map z 7!
Z is a Mebius transformation, and (iv) show that if 2 Meb(H) is a Mebius transformation
of H, then ! exists and is a Mebius transformation of H.)

Exercise 3.5 [

Show that dilations, translations and the inversion z 7! 1=z are indeed Mebius transfor-
mations of H by writing them in the form z 7! (az + b)=(cz + d) for suitable a;b;c;d2 R,
ad bc>0.

Exercise 4.1
Show that if ad bc6 0 then maps @ to itself bijectively.

Exercise 4.2
Prove the two facts used in the above proof [of Proposition 4L.1]:
. , ad bc
J O(Z)J w,
_ (ad bg :
Im( (2)) = jcz+ a2 m(2):

Exercise 4.3 [
Letz=x+iy 2 Handdene (z)= x+iy. (Notethat isnot a Mebius transformation
of H.)

(i) Show that mapsH to H bijectively.

(i) Let :[a;b! H be a dierentiable path. Show that
lengthy ( ) =length 4( ):

Hence conclude that is an isometry of H.

Exercise 4.4
Let Hi;H, 2 H. Show that there exists a Mebius transformation  of H that maps H; to
Ho.

Exercise 5.1
Let H1;H>,2H and let z; 2 Hq;z> 2 Ho. Show that there exists a Mebius transformation
of H such that (H;) = Hoand (z1) = z. In particular, conclude that given z;;z, 2 H,
one can nd a Mebius transformation  of H such that (z;) = z.
(Hint: you know that there exists 1 2 Meb( H) that maps H; to the imaginary axis and
Zy to i; similarly you know that there exists », 2 Meb(H) that maps H, to the imaginary
axis and z to i. What does , ! do?)

Exercise 5.2
For each of the following pairs of points, describe (either | giving an equation in the form
zz+ z z+ ,orinwords) the geodesic between them:

() 3+4i, 3+5i,
(i) 3+4i, 3+4i,

157



MATH3/4/62051 29. Exercises

(i)  3+4i, 5+12i.

Exercise 5.3
Prove Proposition 5.5.2 using the following steps. Forz;w 2 H let

LHS(z; w) coshdy(z;w)
iz wj?

RHS(z; w) T 2Im(z)Im(w)

denote the left- and right-hand sides of (5.5.1) [the formu& for coshdy(z; w)] respectively.
We want to show that LHS(z; w) = RHS(z;w) for all z;w 2 H.

() Let 2 Meb(H) be a Mebius transformation of H. Using the fact that is an
isometry, prove that
LHS( (2); (w)) =LHS(z;w):

Using Exercise 4.2 and Lemma 5.5.1, prove that

RHS( (2); (w)) = RHS( z;w):

(i) Let H denote the geodesic passing througlz;w. By Lemma 4.3.1 there exists a
Mebius transformation  of H that maps H to the imaginary axis. Let (z) = ia and
(w) = ib. Prove, using the fact that dy(ia; ib) = log b=aif a < b, that for this choice
of we have
LHS( (2); (w)) =RHS( (2); (w)):

(iii) Conclude that LHS( z;w) = RHS(z;w) for all z;w 2 H.

Exercise 5.4

A hyperbolic circle C with centre zo 2 H and radiusr > 0is de ned to be the set of all points
of hyperbolic distancer from zy. Using equation (5.5.1) [the formula for coshdy (z; w)], show
that a hyperbolic circle is a Euclidean circle (i.e. an ordirary circle) but with a di erent
centre and radius.

Exercise 5.5 [

Recall that we de ned the hyperbolic distance by rst de nin g the hyperbolic length of a
piecewise di erentiable path

z z
Wi 1.
Im( (1)) t= Im(z)" (292.1)

We then saw that the Mebius transformations of H are isometries.

Why did we choose the function EIm z in (29.2.1)? In fact, one can choosany positive
function and use it to de ne the length of a path, and hence the distance between two
points. However, the geometry that one gets may be very comjdated (for example, there
may be many geodesics between two points); alternatively, ie geometry may not be very
interesting (for example, there may be very few symmetriesj.e. the group of isometries is
very small).

The group of Mebius transformations of H is, as we shall see, a very rich group with lots
of interesting structure. The point of this exercise is to stow that if we want the Mebius
transformations of H to be isometries then we must de ne hyperbolic length by (292.1).

length,( ) =
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Let :H'! R be a continuous positive function. De ne the -length of a path
[a;h! H to be 7 z,
length () = = ( ()i Aidt:
a
(i) Suppose that length is invariant under Mebius transformations of H, i.e. if 2
Meb( H) then length ( ) =length ( ). Prove that

( @) W@i= (2 (29.2.2)

R
(Hint: you may use the fact that if f is a continuous function such that f =0 for
every path thenf =0.)

(i) By taking (z) = z+ bin (29.2.2), deduce that (z) depends only on the imaginary
part of z. Hence we may write as (y) wherez = x + iy.

(i) By taking (z) = kz in (29.2.2), deduce that (y) = c=yfor some constantc > 0.

Hence, up to a normalising constantc, we see that if we require the Mebius transformations
of H to be isometries, then the distance inH must be given by the formula we introduced
in Lecture 2.

Exercise 6.1
Check some of the assertions above, for example:

(i) Show that h mapsH to D bijectively. Show that h maps @ to @ bijectively.
(i) Calculate g(z) = h 1(z) and show that

- Lz

%z = (

iz +1)2’

(iif) Mimic the proof of Proposition 4.2.1 to show that the re al axis is the unique geodesic
joining 0 to x 2 (0;1) and that

do(0:x) = log 11X
Exercise 6.2 |
Show that z 7! h h 1(z) is a map of the form
z +
| oo L2 20 o

Exercise 6.3
Let C = fw 2 D j dp(zp;w) = rg be a hyperbolic circle in D with centre zg and radius
r > 0. Calculate the circumference and area o€.

[Hints: First move C to the origin by using a Mebius transformation of D. Use the
formula dp(0;x) = log(1 + x)=(1 x) to show that this is a Euclidean circle, but with a
di erent radius. To calculate area, use polar co-ordinates]

Exercise 7.1 [
(The point of this exercise is to use the Gauss-Bonnet Theoma to calculate the area of a
given triangle.)

Let be the hyperbolic triangle with vertices at vy =i,v,=2+2i andvz=4+ i.
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(i) Calculate the equations of the sides of .

(i) Let C; and C, be two circles in R? with centres c;; ¢, and radii rq;r», respectively.
SupposeC; and C, intersect. Let denote the internal angle at the point of inter-
section (see gure). Show that

jo % r?

2r1r2

2
rs,

Cos =

Figure 29.2.1 : The internal angle between two circles

(iif) Use the Gauss-Bonnet Theorem to show that the area of is approximately 0.1377.

Exercise 7.2
Assuming Theorem 7.2.1 but not Theorem 7.2.2, prove that thearea of a hyperbolic quadri-
lateral with internal angles 1; 2; 3; 4 is given by

2 (1t 2+ 3t 4):

Exercise 7.3
Let n 3. By explicit construction, show that there exists a regula n-gon with internal
angle equalto ifandonlyif 2 [0;(n 2)=n).

(Hint: Work in the Poincae disc D. Let ! = €™ be ann™ root of unity. Fix
r 2 (0;1) and consider the polygonD (r) with vertices at r;r!;r! 2;:::;rl ™ 1. Thisis a
regular n-gon (why?). Let (r) denote the internal angle of D(r). Use the Gauss-Bonnet
Theorem to express the area oD (r) in terms of (r). Examine what happens asr ! 0
and asr ! 1. (To examine lim;; oAreayD(r), note that D(r) is contained in a hyperbolic
circle C(r), and use Exercise 6.3 to calculate limm gAreayC(r).) You may use without
proof the fact that (r) depends continuously onr.)

In particular, conclude that there there exists a regular n-gon with each internal angle
equal to a right-angle whenevern 5. This is in contrast with the Euclidean case where,
of course, the only regular polygon with each internal angleequal to a right-angle is the
square.

Exercise 7.4 |

(This exercise is outside the scope of the course (and ther®e not examinable!). However,
anybody remotely interested in pure mathematics should getto see what is below at least
once!)
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A polyhedronin R3 is formed by joining together polygons along their edges. Alatonic
solid is a convex polyhedra where each constituent polygon is a redar n-gon, with k
polygons meeting at each vertex.

By mimicking the discussions above, show that there are prdsely ve platonic solids:
the tetrahedron, cube, octahedron, dodecahedron and icobadron (corresponding to f; k) =
(3;3);(4;3);(3;4); (5;3) and (3;5), respectively).

Exercise 8.1
Assuming thattan =tanh a=sinhb, prove thatsin = sinh a=sinhcand cos = tanh b=tanh c.

Exercise 8.2

We now have relationships involving: (i) three angles (the Gauss-Bonnet Theorem), (ii)
three sides (Pythagoras' Theorem) and (iii) two sides, one magle. Prove the following
relationships between one side and two angles:

cosha=cos cosec; coshc=cot cot :

What are the Euclidean analogues of these identities?

Exercise 8.3
Assuming that sin = 1=cosha, check using standard trig and hyperbolic trig identities
that cos =1=cotha andtan =1=sinha.

Exercise 8.4
Prove Proposition 8.4.1 in the case when is acute (the obtuse case is a simple modi cation
of the argument, and is left for anybody interested...).

(Hint: label the vertices A;B;C with angle at vertex A, etc. Drop a perpendicular
from vertex B meeting the side A; C] at, say, D to obtain two right-angled triangles ABD ,
BCD . Use Pythagoras' Theorem and Proposition 8.2.1 in both of tlese triangles to obtain
an expression for sin .)

Exercise 9.1
Find the xed pointsin H[ @ of the following Mebius transformations of H:
2z+5 1 z
= - = +0; = — = :

In each case, state whether the map is parabolic, elliptic ohyperbolic.

Exercise 9.2
Normalise the Mebius transformations of H given in Exercise 9.1.

Exercise 9.3 [

(i) Show that SL(2;R) is indeed a group (under matrix multiplication). (Recall t hat G
is a group if: (i) if g;h2 G then gh 2 G, (ii) the identity is in G, (iii) if g2 G then
there existsg ! 2 G such that gg ! = g g = identity.)

(i) De ne the subgroup

a

SL(2;Z) = ja;b;c;d2 Z;ad bc=1

b
d
to be the subset of SL(2R) where all the entries are integers. Show that SL(2Z) is
a subgroup of SL(2R). (Recall that if G is a group andH G then H is a subgroup
if it is itself a group.)
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Exercise 10.1

(i) Prove that conjugacy between Mebius transformations of H is an equivalence relation.

(i) Show that if 1 and o are conjugate then they have the same number of xed
points. Hence show that if ; is hyperbolic, parabolic or elliptic then  is hyperbolic,
parabolic or elliptic, respectively.

Exercise 10.2

Prove Proposition 10.2.1. (Hint: show that if A1;A2; A 2 SL(2; R) are matrices such that
Ap = A ALA then Trace(A;) = Trace(A A,A) = Trace(Az). You might rst want to
show that Trace(AB ) = Trace( BA) for any two matrices A;B .)

Exercise 10.3
Let (z)= z+ b. If b> 0then show that is conjugate to (z) = z+1. If b < 0 then show
that is conjugateto (z)=z 1. Arez7!'z 1,z7! z+1 conjugate?

Exercise 11.1
Show that two dilations z 7! k1z, z 7! koz are conjugate (as Mebius transformations ofH)
if and only if k; = ky or ky = 1=ks.

Exercise 11.2
Let 2 Meb(H) be a hyperbolic Mebius transformation of H. By the above result, we
know that is conjugate to a dilation z 7! kz. Find a relationship between ( ) and k.

Exercise 11.3
Let 2 Meb(D) be a elliptic Mebius transformation of D. By the above result, we know
that is conjugate to a rotation z 7! € z. Find a relationship between ( ) and

Exercise 12.1
Show that for eachq2 N, 4, as de ned above, is indeed a subgroup of Meki).

Exercise 12.2
Fix k> 0, k 6 1. Consider the subgroup of Meb(H) generated by the Mebius transforma-
tions of H given by

1(2)=z+1; 2(2)= kz:

Is this a Fuchsian group? (Hint: consider ," " 5(z).)
Exercise 13.1

Figures 13.2.1 and 13.2.2 illustrate two tessellations oH. What do these tessellations look
like in the Poincae disc D?

Exercise 14.1 |

(Included for completeness only.) Show that a convex hyperblic polygon is an open subset
of H. To do this, rst show that a half-plane is an open set. Then show that the intersection
of a nite number of open sets is open.
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Exercise 14.2

(i) Write z3 = X1+ iy1, 2o = X2 + iy2, 21,22 2 H. Show that the perpendicular bisector
of [z1;z5] can also be written as

fz2 Hjylz zj?=yijz  zjg:

(i) Hence describe the perpendicular bisector of the arc ofjeodesic between 1 +Rand
(6 +8i)=5.

Exercise 15.1
Let = f ] n(z)=2"z; n2 Zg. This is a Fuchsian group. Choose a suitablep 2 H and
construct a Dirichlet polygon D (p).

Exercise 16.1
Take = f ] n(z) =2"z;n 2 Zg. Calculate the side-pairing transformations for the
Dirichlet polygon calculated in Exercise 15.1.

Exercise 17.1 |
Convince yourself that the above two claims [de ning elliptic cycles] are true.

Exercise 17.2 |

(i) Show that ,s,; v:s; have the same order.

(i) Show thatif has orderm then so does 1.

Exercise 18.1
Check the assertion in example (v) above, i.e. show that if =ha;bja*= b? = (ab? = e
then contains exactly 8 elements.

Exercise 19.1 |

Take a hyperbolic quadrilateral such that each pair of oppofg sides have the same length.
De ne two side-pairing transformation 1; » that pair each pair of opposite sides. See
Figure 29.2.2. Show that there is only one elliptic cycle anddetermine the associated
elliptic cycle transformation. When do ; and » generate a Fuchsian group?

Figure 29.2.2 : A hyperbolic quadrilateral with opposite sides paired
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Exercise 20.1
Consider the polygon in Figure 29.2.3. The side-pairing trasformations are:

z
12)= 2425 oD)=

What are the elliptic cycles? What are the parabolic cycles? Use Poincae's Theorem
to show that the Fuchsian group generated by 1; » is discrete and has the polygon in
Figure 29.2.3 as a fundamental domain. Use Poincae's Theem to show that the group
generated by 1; » is the free group on 2 generators.

Figure 29.2.3 : A fundamental domain for the free group on 2 generators

Exercise 20.2
Consider the hyperbolic quadrila'%eral with vertices
P P P
2 .2 2
= + — . = | —: = + — .
A 1 > B=i > C 1 > and 1

and a right-angle at B, as illustrated in Figure 29.2.4.

@+ 2 0 @+ 2)

Figure 29.2.4 : A hyperbolic quadrilateral

() Verify that the following Mebius transformations are s ide-pairing transformations:

P 52 1

_ >. _ 2 3.
1(2)=z+2+ 2, 2(2)= S—»=
z+ 2

2
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(i) By using Poincae's Theorem, show that these side-paring transformations generate
a Fuchsian group. Give a presentation of in terms of generabrs and relations.

Exercise 21.1

Consider the hyperbolic polygon illustrated in Figure 29.25 with the side-pairing transfor-
mations as indicated (note that one side is paired with itsef). Assumethat 1+ >+ 3=2
(one can show that such a polygon exists).

Figure 29.2.5 : A hyperbolic polygon with sides paired as indicated

(i) Show that there are 3 non-accidental cycles and 1 accideal cycle.

(i) Show that the side-pairing transformations generate aFuchsian group and give a
presentation of in terms of generators and relations.

(iii) Calculate the signature of .

Exercise 21.2
Consider the regular hyperbolic octagon with each internalangle equal to and the sides
paired as indicated in Figure 29.2.6. Use Exercise 7.3 to shothat such an octagon exists
provided 2 [0;3=4).
For which values of do 1; »; 3; 4 generate a Fuchsian group ? In each case when
is a Fuchsian group write down a presentation of , determine the signature sig( )
and brie y describe geometrically the quotient spaceH=

Exercise 21.3
This exercise works through the above [in Lecture 21] calcaltions in the case when we
allow parabolic cycles.

Let be a Fuchsian group and let D be a Dirichlet polygon for D. We allow D to have
vertices on @, but we assume thatD has no free edges (so that no arcs @@ are edges).
We also assume that no side oD is paired with itself.

The spaceH= then has a genus (heuristically, the number of handles), passibly some
marked points, and cusps. The cusps arise from gluing togetir the vertices on parabolic
cycles and identifying the sides on each parabolic cycle.
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Figure 29.2.6 . See Exercise 21.2

(i) Convince yourself that the H=PSL(2;Z) has genus 0, one marked point of order 3,
one marked point of order 2, and one cusp.

(Hint: remember that a side is not allowed to be paired to itsdf.)

(i) Using the Gauss-Bonnet Theorem, show that

0 1
X 1

Areay(D)=2 @rg 2)+ 1= + A
j=1 :

(i) Show thatif ¢ 1 then

Areay(D) 3

and that this lower bound is achieved for just one Fuchsian goup (which one?).

Exercise 23.1 |
Let (X;d) be a metric space. LetK X be a compact subset and le K be a closed
subset ofK . By using Proposition 23.2.2 show thatF is itself compact.

Exercise 23.2
Prove that an isometry is continuous.

Exercise 23.3
Let (X;d) be a metric space and letY X. Show that the following are equivalent:

(i) Y is a discrete subset;

(i) if x5 2 Y is a sequence inY such that x, ! x 2 Y asn!1 , then there exists
N 2 N such that x, = x foralln N.
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Exercise 23.4
Show that, for eachx 2 X, Stab (x) is a subgroup of .

Exercise 23.5
Let X = H with the hyperbolic metric dy. Let = Meb( H) be the group of all Mebius
transformations of H. Calculate the orbit of i and the stabiliser ofi.

Exercise 23.6
Calculate Stabpgi(2:7)(i).

Exercise 23.7

Recall that the modular group = PSL(2 ;Z) acts by homeomorphisms on@. Show that
does not act properly discontinuously in three ways: (i) by showing that it does not

satisfy the de nition of a properly discontinuous group actions, (ii) by nding a point x

such that ( x) is not discrete, (iii) by nding a point x such that Stab (x) is in nite.

Exercise 23.8
Naively, one might expect the intersection between a compdcset and a discrete set to be
nite. This is not the case, and it is easy to nd counterexamples. (Can you think of one?)

(i) Give an example of a metric spaceX, a group of homeomorphisms acting onX, a
point x 2 X and a compact setK such that ( x) is discrete but K \ ( x) is in nite.

(i) Suppose that is now a group of isometries.

Suppose that the orbit ( x) of x is discrete. Show that one can nd" > 0 such that
B-( X))\ (x)=f (x)gforall 2 . (Thatis, the " inthe de nition of discreteness
can be chosen to be independent of the point in the orbit.)

(i) Conclude that if acts by isometries, ( x) is discrete andK is compact thenK \ ( x)
is nite.

Exercise 24.1

Give an example of a metric space X;d) and a group of isometries that acts properly

discontinuously on X for which the conclusion of Proposition 24.2.3 fails, i.e. here exists a
point p 2 X which is xed by some non-trivial element of and for which th ere are points
arbitrarily close (but not equal) to p that are also xed under some non-trivial elements of
. (Hint: where did we use the fact that we are working with Me® bius transformations in

the above proof?)

Exercise 24.2
In the upper half-plane, take = f 5] n(z2)=z+ n; n2 Zg. Find ().

Exercise 24.3
Prove Proposition 24.4.2: namely, show thatif , 2 ()and ! 2 @ then 2 ().

Exercise 24.4
Prove Proposition 24.4.5(ii).

Exercise 24.5
Let p;g2 Z, g6 0. Consider the Mebius transformation of H given by

_ (@+pgz p?

(2)= ®Pz+(1 po’
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Show that 2 PSL(2;Z). By considering the xed point(s) of , show that (PSL(2 ;2)) =
@H.

Exercise 24.6

Check that all three possibilities [of cardinalities of limit sets] can occur: namely, write
down examples of Fuchsian groupso; 1; 2; 1 suchthat ( ;) has, respectively, 01;2;1
elements. (In a later section we shall classify all Fuchsiamgroups for which () is nite.)

Exercise 25.1
Show that any cyclic group is abelian.

Exercise 25.2

Prove Lemma 25.1.1. (Hint: Suppose that < R is a discrete subgroup. Choose an element
0<y 2 such that no other element of lies between 0 and y (why does such an element
exist?). Show thaty generates .)

Exercise 25.3 |
Prove Lemma 25.2.1.

Exercise 25.4

() Consider the hyperbolic transformation (z) = kz. Show that Cyep H)( ) is the set
of all dilations f (z)= z j > 0Og.

(i) Consider the elliptic transformation (z) = € z of D. Show that Cweb( p)( ) is the
set of all rotations around 02 D.

Exercise 25.5 |
Let be a group and let H < be a subgroup. We de ne

NMH)=f 2 jH *'=Hg

to be the normaliser of H is . That is, the normaliser of H is the largest subgroup of
in which H is a normal subgroup.

(i) Check that N (H) is a subgroup of .

(i) Let < Meb(H) be a non-abelian Fuchsian group. Prove thatN ey +)() is also a
Fuchsian group.

(Hint: Suppose not. Consider a sequence of elements dfy,, 1) () that converges
to the identity.)

Exercise 26.1
Prove the converse to Proposition 26.2.1 [in the limit sets otes], namely that if is an
in nite cyclic group generated by a parabolic element then () has one element.

Exercise 26.2
Suppose that is a hon-elementary Fuchsian group. Prove tha must contain a hyperbolic
element.

(Hints: First argue that, apart from the identity, either ¢ ontains only hyperbolic
elements (in which case the statement follows trivially) or that it contains a parabolic
element. By replacing by a conjugate subgroup, we can assum that a parabolic element

1 has1l as a xed point and so has the formz 7! z+ b. If , is another element of ,
consider ( 2 1) for large n.)
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30. Solutions

Solution 1.1

We write T .5 (X;y) in the form R (x;y) + ( a1; a2) where R denotes the 2 2 matrix that
rotates the plane about the origin by angle .

(i) (@) Let T.5;T o2 G. We have to show that the compositionT .5 T 0502 G. Now

T.aT ca(X;y)

T.a (T 0a0(X;y))

= Ta(Ro(xy)+(adad)

= R (Ro(x;y)+(a3;a9)) + (a1 a)

= RRo(xy)+(R (a};ad) + (a1;a2))

= T4 or (a2:a2)+( ariaz) (X Y)

where we have used the observationthaR R o= R 1 o. AST . or (a0:a0)+( a3;a5) 2

G, the composition of two elements ofG is another element ofG, hence the group
operation is well-de ned.

(b) This is trivial: composition of functions is already known to be associative.

(c) The identity map on R? is the map that leaves every point alone. We choose
=0and a=(0;0).

To0;0 (X Y) = Ro(x;y) + (0 0):
As Ry is the rotation through angle 0, it is clearly the identity ma trix, so that
Ro(x;y) = (x;y). HenceTq 0.0)(X;¥) = (X;y). HenceG has an identity element.

(d) Let T3 2 G. We want to nd an inverse for T.; and show that it lies in G.
Write

Ta(xy)=(uv):
Then
(Uv) = R (xy) +(a1;a2)
and some re-arrangement, together with the fact thatR = R , shows that

(xy)=R (uv) R (ag;a):
HenceT;a1 =T . R (ar:ay), Which is an element ofG.

(i) The rotations about the origin have the form T.,. It is easy to check that T.oT og =
T + op so that the composition of two rotations is another rotation. The identity map
is a rotation (through angle 0). The inverse of rotation by is rotation by . Hence
the set of rotations is a subgroup ofG.
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(iii) The translations have the form Ty, wherea 2 R?. It is easy to see that To.a To.a0 =
To.a+ a0 SO that the composition of two translations is another trandation. The identity
map is a translation (by (0;0)). The inverse of translation by (a;;ay) is translation
by ( ai; az). Hence the set of translations is a subgroup oG.

Solution 2.1

() The path determined by both ; and , is a horizontal line fromi to 2 + i.

R

(i) We rst calculate f along tha path using the parametrisation ;. Note that

Yt)=1and Im( 1(t)) = 1. Hence

z zZ,
fC ()i 2idt

2,
= dt

0
= 2:

—
1

R
Now we calculate f along the path using the parametrisation ,. Note that
S(t)=2t 1 andIm( »(t)) =1. Hence

z z,
f = ) f( 2(t)j S()jdt

ZZ

= 2t 1dt
1

_ 2 2

= Uty

= (4 2 @ 1

= 2:

In this example, calculating R f using the second parametrisation was only marginally
harder than using the rst parametrisation. For more compli cated paths, the choice
between a ‘good' and a "bad' parametrisation can make the derence between an
integral that is easy to calculate and one that is impossibleusing standard functions!

Solution 2.2

(i) Choose :[a;1]! Hgiven by (t)=it. Thenclearly (a)= ia and (1) =i (so
that () has the required end-points) and (t) belongs to the imaginary axis. (Note
there are many choices of parametrisations, your answer isotrect as long as your
parametrisation has the correct end-points and belongs to lte imaginary axis.)

(i) For the parametrisation given above, j qt)j =1 and Im( (t)) = t. Hence
lengthy,( )= £ dt=log tji; = loga=logl=a:

a
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Solution 2.3
The idea is simple: The distance between two points is the inmum of the (hyperbolic)
lengths of (piecewise di erentiable) paths between them. Qily a subset of these paths pass
through a third point; hence the in mum of this subset is greater than the in mum over
all paths.

Let X;y;z 2 H. Let y :[a;! H beapathfromxtoyandlet y,:[b;d! Hbea
path from y to z. Then the path 4 :[a;c]! H formed by de ning

(1) = xy (1) fort2[a;b
Xz yiz(t) fort 2 [b;d

is a path from x to z and has length equal to the sum of the lengths of .y; y.;. Hence
dn(x;z)  lengthy( xz) = length 4( xy) +length y( y;z):

Taking the in ma over path from x to y and from y to z we see thatdy(x;z) dy(x;y)+
dn(y; 2).

Solution 3.1
For a straight line we have =0,ie. z + z+ =0.
Recall that the line ax+ by+ ¢ =0 has gradient a=h x-intercept c=aand y-intercept
c=h Letz=x+ iy sothatx =(z+ z)=2 andy = (z 2z)=2i. Substituting these into
ax+ by+ cwe seethat =(a ib)=2 and = c. Hence the gradient is Re()=Im( ), the
x-intercept is at =2Re( ) and the y-intercept is at =2Im( ).

Solution 3.2
A circle with centre zp and radius r has equationjz  zgj
(see the proof of Proposition 3.3.1) we have:

2 r2=0. Multiplying this out
7z 20z Zoz+ jzoj? r?=0

and multiplying by 2 R we have

zz 20z zZoz+ jz)* r?=0:

Comparing the coe cients of thiswith zz+ z + z+ =0 we seethat = Zp and
= jzoj? r 2. Hence the centre of the circle isqo = = and the radius is given by
r r—
N iz
r= jzp? —-= — -
Solution 3.3

We rst show that maps H to itself, i.e. if z 2 H then (z) 2 H. To see this, let
Zz=u+1iv 2 H ThenIm(z) = v > 0. Let (2) = (az+ b=cz+ d) be a Mebius
transformation of H. Then

a(u+iv)+ b _ (au+ b+iav) (cu+ d icv)
cu+iv)+d (cu+td+icv) (cu+d icv)’

(2) =

which has imaginary part

1 1
jcz+ dj2( cv(au + b) + (cu+ d)av) = m(ad bgv
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which is positive. Hence mapsH to itself.
If (z) =(az+ b)=(cz+ d) then letting w = (az+ b)=(cz+ d) and solving for z in terms
of w shows that %(z)=(dz b= cz+ a). Hence ! exists and so is a bijection.

Solution 3.4

) If 1=(ayz+ by)=(c1z+ d1) and , = (axz+ p)=(cz + dy) then their composition is
e

ajz+hy
C2 c1z+dq + d2

(apay + IpCy)z + (@zhy + bpdy) |
(Czal + d2c1)z + ( C2b1 + d2d1) '

2 1(2)

which is a Mebius transformation of H as

(agay + Ipcy)(coby + dody)  (agby + bpdi)(coag + dacy)
= (ady bic)(axdy  bpep) > O

(i) Composition of functions is associative.
(i) The identity map z 7! z is a Mebius transformation of H (take a= d=1;b= c=0).

(iv) It follows from the solution to Exercise 3.4 that if  is a Mebius transformation of H
then sois 1.

Solution 3.5
Let (z)=(az+ b=(cz+ d).

For the dilation z 7! kz take a= k;b=0;c=0;d=1. Then ad bc= k> 0 so that
is a Mebius transformation of H.

For the translation z7! z+ btakea=0;b= b;c=0;d=1. Then ad bc=1 > 0 so
that is a Mebius transformation of H.

For the inversion z 7! 1=ztakea=0;b= 1;,c=1;d=0. Then ad bc=1 > 0 so
that is a Mebius transformation of H.

Solution 4.1
To see that maps @A to itself bijectively, it is su cient to nd an inverse. Noti ce that

Yz) = (dz b= cz+ a) (de ned appropriately for z = 1 , namely we set (1) =
d=¢ is an inverse for .

Solution 4.2
Let (z)=(az+ b)=(cz+ d). Then

qz) = (cz+ d)a (az+ bc_ ad bc

(cz+ d)? ~ (cz+ d)?
so that d b
, . a C.
J O(Z)J - JCZ+ djz
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To calculate the imaginary part of (z), write z = x + iy. Then

ax+iy)+ b _ (ax+ b+ iay) (cx+ d icy).
c(x+iy)+d (cx+ d+icy) (cx+d icy)’

(2) =

which has imaginary part

Im (2) >( cy(ax + b) +(cx + d)ay)

icz+ dj
1 ad b
T joz+ a2 y

1
= m(ad bQIm(Z)

Solution 4.3
Letz=x+iy anddene (z)= x+1iy.

(i) Suppose that (z1) = (z2). Write z3 = X1+ iy1, Zo = Xo + iy,. Then X3+ iy; =
X2 + iy2. Hencexi = X, and y; = y», so that z; = z,. Hence s injective. Let
Z=x+iy2H.takew= x+1iy. Then (w)= ( x)+iy = x+ iy = z. Hence
is surjective. Hence is a bijection.

(i) Let ()= 1()+ i 2(t):[a;! H be a piecewise di erentiable path in H. Note

that
(= at)+i 2(t):
Hence
Zb 1 q
engihy () = g (Y2 H( B2t
Zooq
= . WJ qt)j dt
= length 4( ):

Let z;w 2 H. Note that is a piecewise di erentiable path fromz to w if and only
if is a piecewise di erentiable path from (z) to (w). Hence

du( (2); (W)

inf flengthy( )] is a piecewise
di erentiable path from z to wg
inf flength,( )] is a piecewise
di erentiable path from z to wg
du(z;w):

Hence is an isometry of H.

Solution 4.4
Let Hy;H,> 2 H. Then there exists 1 2 Meb(H) such that ;(H;) is the imaginary axis.
Similarly, there exists » 2 Meb(H) such that »(H;) is the imaginary axis. Hence 21

maps the imaginary axis toH,. Hence , 1| is a Mebius transformation of H that maps
Hq to Hs.
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Solution 5.1

By Lemma 5.2.1 we can nd a Mebius transformation ; of H that maps H1 to the imaginary
axis andz; to i and a Mebius transformation , of H that maps H to the imaginary axis and
zp to i. The composition of two Mebius transformations of H is a Mebius transformation
of H. Hence , 1| is a Mebius transformation of H that maps H; to H, and z; to z,.

Solution 5.2

(i) The geodesic between 3 +4i to 3+ 5i is the arc of vertical straight line between
them. It has equationz+ z+6 =0.

(i) Both 3+ 4i and 3 + 4i lie on the circle in C with centre 0 and radius 5. Hence

the geodesic between 3 +4i and 3 +4i is the arc of semi-circle of radius 5 centre 0
between them. It has equationzz 5% =0.

(iii) Clearly the geodesic between 3+4i and 5+12i is not a vertical straight line. Hence
it must have an equation of the formzz+ z + z+ = 0. Substituting the two
values ofz = 3 +4i; 5+ 12i we obtain two simultaneous equations:

25 6 + =0;169+10 + =0

which can be solved to give = 9; = 79.

Solution 5.3

() Let be a Mebius transformation of H. As is an isometry, by Proposition 4.1.1 we
know that

coshdy( (2); (w)) =coshdy(z;w):
Hence LHS( (z); (w)) = LHS( z;w).

By Exercise 4.2 we know that if is a Mebius transformation then Im( (z)) =
i 42)jIm(z). By Lemma 5.5.1 it follows that

1.4 @ Wiz _ o iz wi? 12 (w)i
2Im( (2))Im( (w)) 2l 42)iIm(2)j Aw)jIm(w)
iz w?

+
2Im(z) Im(w)
Hence RHS( (2); (w)) = RHS( z;w).
(i) Let H be the geodesic passing througla and w. Then by Lemma 4.3.1 there exists a

Mebius transformation  of H mapping H to the imaginary axis. Let (z) = ia and
(w) = ib. By interchanging z and w if necessary, we can assume tha < b. Then

LHS( (2); (W)

coshdy( (2); (w))
coshdy(ia;ib)
coshlogb=a
eIog b=a 4 eIog a=b
2
b=a+ a=b_ b?+ a?
2 2ab
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Moreover,

RHS( (2); (w)) = RHS(ia;ib)
jia  ibj?
1+ 2ab
(b a)?
1+ 2ab
B+ a2
2ab

Hence LHS( (2); (w)) = RHS( (2); (w)).

(i) For any two points z;w let H denote the geodesic containing bothz; w. Choose a
Mebius transformation  of H that maps H to the imaginary axis. Then

LHS(z;w) = LHS( (2); (w)) =RHS( (2); (w)) =RHS(z;w):

Solution 5.4

Let C=fw2 Hjdy(z;w) = rg be a hyperbolic circle with centrez 2 H and radiusr > 0.
Recall ) _2

1z W

W) =1+ :

coshdy(z;w) =1 2Im(2) Im(w)
Let z= Xo+ iypandw = x + iy. Then

(X Xo)?+(y Yo)?
2yoy

coshr =1+

which can be simpli ed to
(x  x0)2+(y VYocoshr)?+y3 ygcostfr=0

p
which is the equation of a Euclidean circle with centre &o; yo coshr) and radiusy, costfr 1=
Yo sinhr.

Solution 5.5

() Let :[a;bg! H beany piecewise di erentiable path. As we are assuminglerty ( )=
length ( ) we have

Zy
( ()i qjdt

length ()

a

length ( )

Z b
CCODICC@NTat

a

VA b
CCONF A @i Wit

a

where we have used the chain rule to obtain the last equality.Hence
Zy
CCOA @i @ jwidt=o:

a
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Using the hint, we see that

(@) W@i= @ (30.1)
for all z2 H.
(i) Take (z)= z+ bin (30.1). Thenj qz)j = 1. Hence
(z+b= (2

for all b2 R. Hence (z) depends only the imaginary part of z. Write (2) = (y)
wherez = x + iy.

(i) Take (z) = kz in (30.1). Thenj Y2z)j = k. Hence

k (ky)= (y):

Setting y = 1 and letting ¢ = (1) we have that (k) = (1)=k = c=k Hence
(z2) = c=Im(2).

Solution 6.1

(i) First note that h is a bijection from H to its image because it has an inverseg(z) =
( z+i)=( iz +1).
We now show thath(H) = D. Let z= u+ iv 2 H so that v> 0. Now
u+iv i
i(u+iv) 1
u+i(v 1) (v+1) iu
(v+1)+ iu (v+1) iu
2u+i(1 u? v?)
(v+1)2+ u?
To show that h(H) = D it remains to show that the above complex number has
modulus less than 1. To see this rst note that:
(u)2+@1  u? v?)?
= ut+2u?+1 2 +2udVi+ Vv (30.2)
(v+1)?+ u?)?
= vi+4vi+6vi+4v+1l
+2uVv2 + 40y + 2u? + u: (30.3)

h(z)

To prove that jh(z)j < 1 it is su cient to check that (30.2) < (30.3). By cancelling
terms, it is su cient to check that

V2 < 4B +6V2+4v+4udy:

This is true because the left-hand side is clearly negativewhereas the right-hand side
is positive, using the fact that v > 0.

To show that h maps @H bijectively to @ note that for u2 R

_ u+i(l uw?)
h(u) = 241
which is easily seen to have modulus one (and so is a point o@). Note that
h(1 )= i andthat h(u) 6 i if uis real. Henceh is a bijection from @1 to @D.
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(i) We have already seen thatg(z) = h Y(z) =( z+ i)=( iz +1). Calculating g¥z) is
easy. To calculate Im(@@(z)) write z = u+ iv and compute.

(i) Let (t)=1t,0 t x.Then isa pathfrom O tox and it has length

z z
2 _ x 2 dt
1jzj2 0 t2
X 1 1

= 4+ —

o1 t 1+t
= lo 1+t
B rS

To show that this is the optimal length of a path from 0 to x (and thus that the
real-axis is a geodesic) we have to show that any other path ém 0 to x has a larger

length.
Let (t)= x(t)+ iy(t),a t bbe a path from 0 tox. Then it has length
Zy
2
LT] op
- 2 P e oz
4 1 (x()?+y(1)?)
b2
. on(t) dt

U fh |, < it
a 1 x(t) 1+ x(t)
1+ x(t) P
1 x() ,
1+x.
1 x’
with equality precisely when yqt) = 0 and y(t) = 0, i.e. with equality precisely when
the path lies along the real axis.

log

log

Solution 6.2
Recallh(z)=(z 1i)=(iz 1)andh Y(z)=( z+i)= iz+1). Let (2)=(az+ bh=(cz+
d), ad bc > 0, be a Mebius transformation of H. We claim that h h 1 is a Mebius

transformation of D.
To see this, rst note that (after a lot of algebra!)

[a+ d+i(b OJz+[ (b+ 0 i(a d)
[ (brO+i(a djz+[a+d i(b 0]
zZ +

hh (z)

zZ +

Finally, we must check that j j> j j? > 0 which is a simple calculation, using the fact
that ad bc>0.

Solution 6.3
By applying a Mebius transformation of D, we can move the circle so that its centre is at
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the origin 0 2 D. (This uses the additional facts that (i) a hyperbolic circle is a Euclidean
circle (but possibly with a di erent centre and radius), and (ii) Mebius transformations of
D map circles to circles.) As Mebius transformations of D preserve lengths and area, this
doesn't change the circumference nor the area.

Let C;, = fw2 Djdp(0;w) = rg. By Proposition 6.2.1 and the fact that a rotation is a
Mebius transformation of D, we have that C, is a Euclidean circle with centre 0 and radius
R where

1+R _ .
1 R
HenceR = (€ 1)=(€ +1) =tanh( r=2).
Now Z
circumference(C;) = i
1] zj?

where (t)= Re', 0 t 2 is a path that describes the Euclidean circle of radiusR,

centred at 0. Now

z
2

1 27

2
2 . )

= 1 op o

2

R

s 1 RZ
4R
1 RZ2

circumference(C,)

and substituting for R in terms of r gives that the circumference ofC; is 2 sinhr.
Similarly, the area of C, is given by

Z 7
4

A = A - o9\

reap(Cy) o @1 292 dz
whereD, = fw 2 Djdp(0O;w) rgis the disc of hyperbolic radiusr with centre 0. Now
D, is the Euclidean disc of radiusR = tanh( r=2) centred at 0. Recall that when integrating
using polar co-ordinates, the area element isd d . Then

27, Zg 4
Areap(C;) = ———dd
r o =@ 2?72
1 R
= 4 >
1 -0
2
= 4 L
1 R2
= 4 sinh?r=2:
Solution 7.1
Letvi = i;vp=2+2iand vz =4+ i. Denote the internal angle atv; by . i=1;2;3.

(i) The geodesics are all given by semicircles. Le§;; be the semicircle corresponding to
the geodesic throughv; and v; have centrec; and radiusrj; .
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Consider the pointsvi;vo. These lie on a semi-circle, the equation of which has the
form

zz+ z + z+ =0:

Setting z = i; 2+2i gives the pair of simultaneous equations 1+ =0and 8+4 + =
0. Hence = land = IO7=4. By E)fser_cise 3.2 we know that the semi-circle has
centre  =7=4 and radius 2 = 6544.

A similar argument gives the other centres and radii. In summnary:

Clo=T7=4 r1p = IO6_5—4; Ci13=2; rz= IO5; Co3=9=4; rp3 = IO6_5—4:

(i) This is easiest to understand this is by drawing a picture. Draw in the tangent lines to
the circles at the point of intersection; then is the angle between these two tangent
lines.

Draw the (Euclidean!) triangle with vertices at the point of intersection and the two

centres. See Figure 30.1. The internal angle of this triang at the point of intersection

is split into three; the middle part is equal to . Recall that a radius of a circle meets
the tangent to a circle at right-angles. Hence both the remaning two parts of the

angle in the triangle at the point of intersection is given by =2 . Hence the triangle
has angle =2 + + =2 = at the vertex corresponding to the point of
intersection.

Figure 30.1 : The Euclidean triangle with vertices at c;; ¢, and the point of intersection

The cosine rule gives the required formula (recall that cos = Ccos ).
(i) By symmetry we see that 1= 3.

We rst calculate ,. Notice that this is the internal angle between the semicirdes
S12; Sp3. Using the formula from (ii) we see that

p

52 p@Z

[e2)

7
i

Ao

5
ok

a
N

cos o = =
27—

Hence , 2:8929.

Now calculate ;. This is not the internal angle betweenS;, and S;3; instead it is
minus the internal angle. Hence
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Figure 30.2 : 1is minus the internal angle.

2 P2 Pg2

9
cos 1= -2 2p_p6552 -
2 572
so that 1 30861. Hence ; = 3 0:0555 (remember that we always take
angles to be unsigned).
By the Gauss-Bonnet Theorem,
Areay() = 1 2 3 0:1377

(Note! This question appears in Anderson's book. The answer derivkin Anderson's
book is wrong!)

(An alternative way to calculate the angles would be to (i) cdculate the lengths of
the sides using the formula coshiy(z;w) = 1+ (jz  wj?=2Im(z) Im(w)), and then
(i) use the Cosine Rule Il from Proposition 8.5.2.)

Solution 7.2
Let Q be a hyperbolic quadrilateral with vertices A;B;C; D (labelled, say, anti-clockwise)
and corresponding internal angles; ; ; . Construct the geodesic fromA to C, creating
triangles ABC (with internal angles 1; ; 1) and CDA (with internal angles 2;; »2),
where 1+ .= and 1+ = . By the Gauss-Bonnet Theorem
Areay(Q) = Areay(ABC)+Areay(CDA)

= (1+ + 1)+ (2+ + 2)

= 2 (+ + + )
Solution 7.3

Let D(r) be the hyperbolic polygon with vertices atr;r!;:::;rt " 1. Let j(r) denote the
internal angle at vertex r! I Foreach0 k n 1, consider the Mebius transformation
of D given by (z) = wKz; this rotates the polygon so that vertex v; is mapped to vertex
Vi+k. Thus (D(r)) = D(r). As Mebius transformations of D preserve angles, this shows
that the internal angle at vertex v; is equal to the internal angle at vertexvy+ k. By varying
k, we see that all internal angles are equal.

By the Gauss-Bonnet Theorem, we see that

AreayD(r)=(n 2) n (r):

Notice that D(r) is contained in C(r), the hyperbolic disc with hyperbolic centre 0 and
Euclidean radiusr. By (the solution to) Exercise 6.3, we see that

lim AreayD (r) lim AreayC(r)
rt 0 rt 0
. 4r?
= my7 72 =0
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Hence N2
r“!mo ()= - :
Asr ! 1, eachvertexr! k! 1k2 @. The internal angle at a vertex on the boundary
is equal to 0. Hence lim, 1 (r)=0.
Hence given any 2 [0;(n  2)=n), we can nd a value of r for which = (r), and

hence construct a regularn-gon with internal angle
Conversely, suppose thatD is a regular hyperbolic polygon with each internal angle
(n  2)=n. Then we have thatn (n 2) . By the Gauss-Bonnet Theorem,

AreayD =(n 2) n (n 2 (n 2 =0:
As area must be positive, this is a contradiction.

Solution 7.4
(Not examinablel|included for interest only!)

Clearly n 3andk 3.

The internal angle of a regular (Euclidean)n-gonis (n  2) =n . Suppose thatk n-gons
meet at each vertex. As the polyhedron is convex, the angle sa must be less than 2.
Hence

ku < 2:
n
Rearranging this and completing the square givesk 2)(n 2) < 4. Asn, k are integers
greater than 3, we must have that eithern = 3 or k = 3. It is easy to see that the only
possibilities are (; k) =(3;3), (3;4), (3;5), (4;3) and (5;3), as claimed.

Solution 8.1
First note that

1
1+tan?
1
4+ tanh?a
sinhZ b
sini’b
sini®b+tanh?a’

cod =

Now using the facts that coshc = coshacoshb and tanh?a=1 1=cosif a we see that

costt b

tanhZa=1 "
costf ¢

Substituting this into the above equality gives
sinh?b
) Kb
sinh“b+ 1 %—

COos C
tanhZb
tanh?c

cod =

(after some manipulation, using the fact that cost?  sinh? = 1).
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To see that sin = sinh b=sinhc we multiply the above equation and the equation given
in Proposition 8.2.1 together to obtain

tanh btanh a

tanh ¢ sinh
sinhbcoshcsinha 1

coshb sinhc cosha sinhb
sinha_

sinhc’

sin =

using the fact that coshc = cosh acoshb.

Solution 8.2
We prove the rst identity. By Proposition 8.2.1 we know that
tanhb . sinhb
=_——;8snh = ——:
tanh c sinhc
Hence

cos _ tanhbsinhc _ coshc _
cos  tanhcsinhb ~ coshb

cosha;

using the hyperbolic version of Pythagoras' Theorem.
We prove the second identity. By Proposition 8.2.1 we have tlat

an = tanh a an = tanh b,
~ sinhb’ ~ sinha’
Hence . .
_ sinha sinhb

cot cot = coshacoshb= coshc;

" tanhbtanha
by the hyperbolic versin of Pythagoras' Theorem.

Take a Euclidean right-angled triangle with sides of length a;b and c, with ¢ being
the hypotenuse. Let be the angle oppositea and opposite b. Then cos = b=cand
sin = b=cso that
cos cosec =1:

As in a Euclidean triangle the angles sum to , we must have that = =2 . Hence the
above identity says that sin(=2 ) =cos
Similarly, we have that tan = a=band tan = b=a Hence

cot tan =1:

Again, this can be re-written as tan( =2 ) =1=tan

Solution 8.3
Note that r _
cos —pl sin? = 1 1 __snha_ 1
cosifa cosha tanha’
Hence ]
sin 1 cosha 1
tan = = } = — :
cos coshasinha sinha
Solution 8.4

Label the vertices A;B and C so that the angle at A is , etc. By applying a Mebius
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transformation of H we may assume that none of the sides of are segments of vertal
lines. Construct a geodesic from vertexB to the geodesic segmentA; C] in such a way that
these geodesics meet at right-angles. This splits into two right-angled triangles, BDA
and BDC . Let the length of the geodesic segment; D ] be d, and suppose thatBDA has
internal angles 1; =2; and side lengthsd; y;c, as in the gure. Label BDC similarly.
See Figure 30.3.

Figure 30.3 : The sine rule

From Proposition 8.2.1 we know that

_sinhby _ tanhd . _ sinhby _ tanhd.

sin 1= ———; COS 1 = ;Sin o= ———; €C0S o= ——:
1 sinhc 17 fanhc 2~ “sinha 27 tanha

By the hyperbolic version of Pythagoras' Theorem we know tha
coshc = cosh by coshd; cosha = cosh b, coshd:

Hence

sin sin( 1+ »)

sin 1€c0S 2+Sin 2COS 1
sinhb; sinhd cosha N sinh b, sinhd coshc

sinhc coshd sinha  sinha coshd sinhc
sinhb; sinhd sinh by sinhd shby

- sinhcsinha coshb, + sinhasinhc

sinhd . .

= m(smh b coshby, + sinh b, coshby)
sinhd .

B sinhasinhcsmh(bl + by)

sinhbsinhd.

sinhasinhc’

Using Proposition 8.2.1 again, we see that sin = sinh d=sinhcand sin = sinh d=sina.
Substituting these into the above equality proves the resul.
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Solution 9.1

1 has one xed pointin Hat( 3+ iIO 51)=6 and so is elliptic. » has xed points at 1
and 1 and so is hyperbolic. 3 has one xed point at i and so is elliptic. 4 has one xed
point at 0 and so is parabolic.

Solution 9.2
We have

2
P
— 13 .
1(2) - 9_37
13

and 3 and 4 are already normalised.

Solution 9.3

(i) Clearly the identity is in SL(2 ;R). If A 2 SL(2;R) is the matrix ( a;b;c;d) then A !
has matrix (d; b; c;a), which is in SL(2;R). If A;B 2 SL(2;R) then detAB =
detA detB =1 so that the product AB 2 SL(2; R).

(i) We show that SL(2;Z2) is a subgroup. Clearly the identity is in SL(2;Z). If A;B 2
SL(2; Z) then the product matrix AB has entries formed by taking sums and products
of the entries of A and B. As the entries of A; B are integers, so are any combination
of sums and products of the entries. HenceAB 2 SL(2;Z). Finally, we need to
check that if A 2 SL(2;Z) then so is A 1. This is easy, as ifA = (a;bc;d) then
A 1=(d; b c;a), which has integer entries.

Solution 10.1

() Recall that the Mebius transformation 1 of H is conjugate to the Mebius trans-
formation , of H if there exists a Mebius transformation g 2 Meb(H) such that
g19 = 2
Clearly is conjugate to itself (take g = id).

If ,=9g19 'then 1=g ! ,gsothat ,is conjugateto 1if 1 is conjugateto ».
If ,=g19 Yand 3= h oh Tthen 3=(hg) 1(hg) ! sothat 3 is conjugate to
1.

(i) Let ; and » be conjugate. Write > = g 1g * whereg2 Meb(H). Then
1)=x , g’ 2g(x)= x
o 2(9(x)) = 9(x)

so that x is a xed point of 1 if and only if g(x) is a xed point of ,. Henceg
maps the set of xed points of ; to the set of xed points of ,. As g is a Mebius
transformation of H and therefore a bijection, we see that 1 and » have the same
number of xed points.
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Solution 10.2
Let A = (aj);B = (bj) be two matrices. We rst show that trace( AB) = trace( BA).
Recall that the trace of a matrix is the sum of the diagonal elenents. Hence

X
trace(AB) = (AB )i
X X X X X
= aj b = biaj =  (BA)
i oo j
= trace(BA)
where (AB); denotes the (;j )th entry of AB.
Let + by + b,
_ a1z . _ axZ
1(2) - Ciz + dl' 2(2) Coz+ do
be two conjugate Mebius transformations of H. Let
_ a b, a b
A= cg dp Az = c2 d

be their corresponding (normalised) matrices. Letg be a Mebius transformation of H such
that 1 = g ! »g. Suppose thatg has matrix A. By replacing A by A if necessary, it
follows from the remarks in Lecture 10 that A1 = A 1A5A.
Hence
trace(A;) = trace( A 1A,A) = trace( A,AA 1) =trace( A,):

Hence ( 1) =trace(A1)2 =trace(A2)2= ( ).

Solution 10.3
Let 1(z) = z+ bwhereb > 0 and let 5(z) = z+1. As both ; and , have xed
points at 1 and a conjugacy acts a change of co-ordinates', we look for @njugacy from
1to o that xes 1. We will try g(z) = kz for some (to be determined)k > 0. Now
gli02)=9g"?tikz)=g Ykz+ b= z+ b=k So we choos& = b.
Now let 1(z)= z bwhereb>0andlet ,(z)= z 1. Again, let g(z) = kz for some
k>0.Theng ! 19(z)=9g ! (kz)=g Y(kz b=z b=k So again we choos& = b.
Suppose that 1(z) = z+1and ,(z) = z 1 are conjugate. Then there existgy(z) =
(az+ b)=(cz+ d) 2 Meb( H) such that 19(z) = g 2(z). In terms of matrices, this says that

11 a b _ a b 1 1
01 c d c d 0 1
That is,
atc b+d _ a a+b
c d ~ ¢ c+d
Comparing coe cient in the "+' case, we see thatc=0and d = a. Hencead bc=

a? < 0, a contradiction. In the ~ ' case, we see thac =0, d =0, so that ad bc= 0,
again a contradiction. Hence ;; » are not conjugate in Meb(H).

Solution 11.1
Let 1(z) = kiz and 2(z) = kpz where k1;ko 6 1. Suppose that 1 is conjugate to
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2. Then there exists a Mebius transformation of H, (z) = (az+ b)=(cz + d), such that
1(z) = 2 (2). Explicitly:

akiz+ b _ az+ b
ckiz+d 2 cz+d

Multiplying out and equating coe cients gives
ack; = ackiks; adk; + bc= kyad+ kikobc; bd= kybd:

As ks 6 1 the third equation implies that bd= 0.

Case 1:b=0. If b= 0 then the second equation implies thatadk; = adk,. So either
ki = ko orad=0. If ad =0 then, asb=0, we havead bc=0 so is not a Mebius
transformation of H. Hencek; = ko.

Case 2:d=0. If d=0 then bc= bckk,. So eitherk;k, =1 or bc=0. If bc= 0 then,
asd=0, we havead bc=0so is nota Mebius transformation of H. Hencekik, = 1.

Here is a sketch of an alternative method. If 1(z) = kiz and ,(z) = k»z are conjugate
'5 n they have the same trace. The {race of ; is seen in Exercise 11.2 below to be

ky + l— k1)?, and the trace of ,is ( ka+1= Kk»)2. Equating these shows (after some
manlpulatlon) that ki = ko or k; = 1=ko.

Solution 11.2
Let be hyperbolic. Then is conjugate to a dilation z 7! kz. Writing this dilation in a
normalised form

ez
270 -
i
we see that )
pP— 1
()= k+p=
k
Solution 11.3
Let be an elliptic Mebius transformation. Then s conjugate (as a Mebius transfor-
mation of D) to the rotation of D by , i.e. is conjugate toz 7! € z. Wkiting this
transformation in a normalised form we have
€2z
z7! o =2’

which has trace _ _
(€52+ e 52)2 = 4c0s?( =2):

Hence ( ) =4cos?( =2).

Solution 12.1
Fix g > 0 and let
az+b

9= (@)= P ja;b;c;d2 Z; b;care divisible by q

First note thatid 2 4 (take a=d=1;b=c=0).
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Let 1=(a1z+ by)=(ciz+ dy); 2=(axz+ p)=(coz+ dy) 2 4. Then

(naz + b))z + (arhy + bydy) |
(c1a2 + d1C2)Z + ( Clbz + dldz) '

1 2(2) =

Now q divides by; bp; cg; c2. Henceq divides ajbp + bidy and ciap + dicp. Hence 1 22 .
If (z)=(az+ b=(cz+d)2 qthen z)=(dz b=( cz+ a). Hence 2 .
Hence 4 is a subgroup of Meb(H).

Solution 12.2
The group generated by 1(z) = z+1 and »(z) = kz (k 6 1) is not a Fuchsian group.
Consider the orbit ( i) of i. First assume that k > 1. Then observe that

S0 A= LM MKMi) = ," (K" + m) =i+ m=k":

By choosing n arbitrarily large we see that m=k" is arbitrarily close to, but not equal
to, 0. Hencei is not an isolated point of the orbit ( i). Hence (i) is not discrete. By
Proposition 12.5.1, is not a Fuchsian group.

The case where G< k < 1 is similar, but with ," " 2 replaced by 5 " ,"

Solution 13.1
See Figure 30.4.

Figure 30.4 : Solution to Exercise ex:examplesoftwotessellations

Solution 14.1
(Not examinable]included for interest only!)

Recall that a subsetC  H is convex if: 8z;w 2 C;[z;w] C; that is, the geodesic
segment between any two points ofC lies insideC.

Let us rst show that a half-plane is convex. We rst show that the half-plane Hg =
fz 2 HjRe(z) > Ogis convex; in fact this is obvious by drawing a picture. Now l¢ H be
any half-plane; we have to show thatH is convex. Recall thatH is de ned by a geodesic
* of H and that the group of Mebius transformations of H acts transitively on geodesics.
Hence we can nd a Mebius transformation of H that maps the imaginary axis to .
Hence maps eitherHg or fz 2 H j Re(z) < Og to H. In the latter case we can rst
apply the isometry z 7! z so that Hg is mapped by an isometry toH . As isometries map
geodesic segments to geodesic segments, we see tHais convex.
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Finally, let D = \ H; be an intersection of half-planes. Letz;w 2 D. Then z;w 2 H;
for eachi. As H; is convex, the geodesic segmenzjw] H; for eachi. Hence g;w] D
so that D is convex.

Solution 14.2

(i) By Proposition 14.3.1, z 2 H is on the perpendicular bisector of £1; z5] if and only if
du(z;z1) = dy(z;2z2). Note that

On(z;z1) = du(z;22) ,  coshdy(z;z1) = coshdy(z; 22)
R L P LI
2y11m(z2) 2y21m(2)

. Yz zmj?=yijz 2%

(i) Let z = x+ iy. Then z is on the perpendicular bisector of 1 + 2 and (6 + 8i)=5
precisely when

Siciy) @e2P=2jc+iy) g+ o
i.e. ) !
4 Py 2P =5 x o o+ oy o

Expanding this out and collecting like terms gives

x? 4dx+y?=0

and completing the square gives
(x 2?+y*>=0:

Hence the perpendicular bisector is the semi-circle with aare (2;0) and radius 2.

Solution 15.1

Let = f nj n(2) =2"zg. Let p= i and note that ,(p) = 2"i 6 p unlessn = 0.
For eachn, [p; n(p)] is the arc of imaginary axis fromi to 2"i. Suppose rst that n > 0.
Recalling that for a < b we havedy(ai; bi) = log b=ait is easy to see that the midpoint of
[i; 2"i] is at 2"72i. HenceLp( n) is the semicircle of radius 2=2 centred at the origin and

Hp( n)=fz2 Hjjzj < 2%

For n < 0 one sees that
Hp( n)=fz2 Hjjzj > 2%
Hence
\

D (p) Hp( n)

n2 nfldg
fz2 Hj 1= 3 < jzj < pEg:
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Solution 16.1

Let p= i andlet ,(z)=2"z. There are two sides:
s; = fz2Cjjz :1p:p§g;
s, = fz2Cjjzj= 2g:

The side s; is the perpendicular bisector of p; 1(p)]. Hence s,, the side-pairing trans-
formation associated to the sides;, is

«(2)=( 1) Y(2)=2z
and pairs sides; to side s,. Hence ,(z) = ¢ '(z) = z=2.

Solution 17.1

(i) This follows by observing that running the algorithm sta rting at (v; s) is the same
as running the algorithm for (v;s) backwards.

(i) Starting the algorithm at ( vi;s;i) is the same as starting from thei® stage of the
algorithm started at ( Vo; So)-

Solution 17.2
Suppose the vertices in the elliptic cycle are labelled so tht the elliptic vertex cycle is

Vo! wvo! ! Vh 1
and the side-pairing transformations are labelled so that he elliptic cycle is given by

Voiso— non 1 1:

Suppose that ,.s, has orderm > 0.
Now consider the pair (vi;s;). Then the elliptic cycle is given by

Viisi  — i1 1n i+1
= (i 1) voiso( i ) b

Then
v = (i Dwsoli D) i D) wesol i D) 7
( i l) vO;SO( i 1) !
= (i 1) Vniso( i )t
= (i (i ) 1
= Id:

Hence ,,.s, has orderm.

Solution 18.1
Let = ha;bja*= I = (ab? = ei. First note that e = a* = aa and e = b? = bbso
that a 1= a®and b 1 = b. Now e = (ab)? = ababand multiplying on the left rstby a !
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and then b ! gives that ab= ba’. (Note that one cannot write (ab)? 6 a’k?.) From this it
follows that

a’b= a(ab) = a(bd’) = (aba® = ba’a® = bd® = bafa* = bd
and similarly
a’b= a(a’b) = a(b&) = (aba® = baa® = ba® = ba:
Now let w 2 be a nite word in . Then
w = atpht gk ph

for suitable integers nj;m;. Using the relations a* = ¥ = e we can assume thatn; 2
f0;1;2;3g and m; 2 f 0; 1g. Using the relations we deduced above thatb= ba’, a’b= ba?
and a®b= ba, we can move all of theas to the right-and all of the bs to the left to see that
we can write w = a"b™ for suitable integersn;m. Again, as a* = b*> = e we can assume
that n2f0;1;2;3g and b2 f 0; 1g. Hence there are exactly 8 elements in .

Solution 19.1
Label the sides and vertices of the quadrilateral as in Figue 30.5. Then
D C
S3
Sq S2
S1
A B

Figure 30.5 : A hyperbolic quadrilateral

A |2 D | D
S1 | S3 Sy
|1 c | C
! s S
2 ! B B
! s s
ul ! A A
! S s

Hence the elliptic cycle isA! D! C! B and the corresponding elliptic cycle transfor-
mationis ;* ,1 1 5.

If we let \ A denote the internal angle atA, with similar notation for the other vertices,
then the angle sumis sumpA)=\A+\B+\ C+\D.

By Poincae's Theorem, 1; » generate a Fuchsian group if and only if

mAMA+\B+\C+\D)=2
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for some integerm 1.

Solution 20.1
Label the sides as in Figure 30.6. Then

S3 Sq

S1 So

Figure 30.6 : A fundamental domain for the free group on 2 generators

1 | 2 1 1
S1 ' S, Sy
|11 1 LI
S3 | S1 ’
and
1 1 | 1 )
S3 Sq4 s3
and
0 2 o 0
S Sy S1

Hence there are 3 vertex cycles: 1! 1,1 and 0. The corresponding parabolic cycles
are: ;15 1and », respectively.

1! 1 with corresponding parabolic cycle transformation Y

1 with corresponding parabolic cycle transformation 1;
0 with corresponding parabolic cycle transformation »:

Clearly ; is parabolic (it is a translation and so has a single xed poiri at 1 ). The
map » is parabolic; it is normalised and has trace ( ») = (1+1) 2 = 4. Finally, the map
.1 2 is given by:
1 z .z 3z 2

2z+1  2z+1 ~ 2z+1

11 2(2)=

which is normalised; hence ( ;* 2)=( 3+1)?=4sothat ;' ;is parabolic.

By Poincae's Theorem, as all parabolic cycle transformaions are parabolic (and there
are no elliptic cycles), the group generated by 1; » is a Fuchsian group.

As there are no elliptic cycles, there are no relations. Herethe group is isomorphic to
ha;b (take a= 1;b= »), which is the free group on 2 generators.
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Solution 20.2

() The sug)e pairing transformation 1 |spa translation that clearly maps the side Reg) =
(1+ 2=2)tothe side Rez) =1+ 2=2. Hence ; is a side-pairing transformation.

Recall that through gny two points of H[ @H there emsbs a unique ge'5)de3|c The map
> maps the pointi  2=2 to itself and the point (1+ 2=2)to 1+ 2=2. Hence »
maps the arc of geodesicA;B] to [C;B]. Hence » is a side-pairing transformation.

(i) Let s; denote the side B; A], s, denote the side B; C], sz denote the side C;1 ] and
s, denote the side A; 1 ].

Now

B 2 B | B

S1 So S1
Hence we have an elliptic cycleE = B with elliptic cycle transformation » and
corresponding angle sum sunif) = \B = =2. As 4=2 = 2 , the elliptic cycle
condition holds with mg = 4.

Now consider the following parabolic cycle:
1 b1 1
Sa | S3 Sq

Hence we have a parabolic cycl®, = 1 with parabolic cycle transformation ;. As 3
is a translation, it must be parabolic (recall that all parab olic Mebius transformations
of H are conjugate to a translation). Hence the parabolic cycle endition holds.

Finally, we have the parabolic cycle:

A |1 c C
Sy | S Sy
2 ! A A
! s | S

Hence we have a parabolic cycld®, = A ! C with parabolic cycle transformation:
,1 1. Now ,! ; has the matrix
P P P P

2=2 IOl:Z 1 2+ 2 _ 2=2 2 b1 1
1 7 2=2 0 1 - 1 2 2=
which is normalised. Hence the trace of ,* 1 is
|
~ 2
p 5 , p 5 2 N
2 2

Using the fact that a Mebius transformation is parabolic if and only if it has trace 4,
we see that , 1| is parabolic. Hence the parabolic cycle condition holds.

By Poincae's Theorem, 3 and » generate a Fuchsian group. In terms of generators
and relations, it is given by

ha; bj bi:
(Here we takea = 1;b= ,. The relation b* comes from the fact that the elliptic
cycle E = B has elliptic cycle transformation g = 5 with angle sum =2. Hence

me = 4. The relation ¢£¢ is then 1.
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Solution 21.1

(i) First note that one side of the polygon is paired with itself. Introduce a new vertex
at the mid-point of this side, introducing two new sides eachof which is paired with
the other. Label the polygon as in Figure 30.7.

Figure 30.7 : Labelling the hyperbolic polygon, remembering to add an eka vertex to
the side that is paired with itself

Then
B . B | B
S1 Sy S1
This gives an elliptic cycle E; = B with elliptic cycle transformation 1 and angle
sum sum() = . Hence the elliptic cycle condition holds with mq = 2.
We also have
b ,= D D
S3 S4 S3

This gives an elliptic cycle E, = D with elliptic cycle transformation , and angle
sum sum(E;) = 2 =3. Hence the elliptic cycle condition holds withm; = 3.

Also

F s F F

Ss Se Ss
This gives an elliptic cycle Ez = F with elliptic cycle transformation 3 and angle
sum sum(Es) = 2 =7. Hence the elliptic cycle condition holds withmy = 7.

Finally
A [ c | C
S1 ' Sy, S3
|2 E | E
! s S
3 A A
! 5 | s
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This gives an elliptic cycle &y = A C | E with elliptic cycle transformation
3 2 1. The angle sumis sumE) = 1+ 2+ 3 =2 . Hence the elliptic cycle
condition holds with m4 = 1. Hence E; is an accidental cycle.

(i) By Poincae's Theorem, 1; »; 3 generate a Fuchsian group . In terms of generators
and relations we can write

= ha;b;cja?= b= ¢’ = abc= ei:

(iii) To calculate the genus of H= we use Euler's formula2 2g=V E+ F. Recall that
each elliptic cycle on the polygon glues together to give ongertex on a triangulation
of H=. As there are 4 elliptic cycles we haveV = 4. Each pair of paired sides in
the polygon glue together to give one edge on a triangulatiorof H=. As there are
6 sides in the polygon, there areE = 6=2 = 3 edges in the trinagulation of H=. As
we are only using 1 polygon, there i~ = 1 face of the triangulation of H=. Hence
2 29=V E+F=4 3+1=2,sothat g=0.

As the orders of the non-accidental elliptic cycles are 23;7, we see that sig() =
(0;2,3,7).

Solution 21.2
From Exercise 7.3, we know that there exists a regular hyperblic n-gon with internal angle
provided (n 2) 8 > 0. Whenn = 8, this rearranges to 2 [0; 3 =4).
Label the vertices of the octagon as indicated in Figure 30.8

Figure 30.8 : See the solution to Exercise 21.2

We have
Vi |1 Va o, Vg
S1 ' Sz Sy
|2 V3 | V3
So ) S3
Il ! V2 | V2
S So
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|4 vz V7
1

K Ve Ve
1

Thus there is just one elliptic cycle:
E=vi! vg! v3! wvo! wvg! vg! vy! g

with associated elliptic cycle transformation:

As the internal angle at each vertex is , the angle sum is 8 Hence the elliptic cycle
condition holds whenever there exists an integem = mg suchthat8m =2 ,i.e. whenever
= =4m for some integerm. When m =1 this is an accidental cycle.
Let be such that = =4m for some integerm. Then by Poincae's Theorem, the
group -4y generated by the side-pairing transformations 1;:::; 4 generate a Fuchsian
group. Moreover, we can write this group in terms of generates and relations as follows:

_ Ce 1 1 1 1 m_ .
=am=h1; 2 3 4j( 4 3° 4327 1 2 1) = @

The quotient spaceH= _ 4, is a torus of genus 2. Wherm =1, sig( -
H= _, has no marked points. Whenm 2 then sig( -4)=(2;m) and H
marked point of order m.

4)=(2; )and
= _4m has one

Solution 21.3

(i) Consider the Dirichlet polygon and side-pairing transformations for the modular
group that we constructed in Lecture 15. See Figure 30.9. Thesidess; and s;
are paired. This gives one cusp at the pointl .

There are two elliptic cycles: A B (which has an angle sum of 2= 3), and i (which
has an angle sum of ). Hence when we glue together the vertice®\ and B we get a
marked point of order 3, and the vertexi gives a marked point of order 2.

We do not get any "holes' when we glue together the sides. Heaave have genus 0.
Thus the modular group has signature (0;23;1).

(i) By Proposition 13.2.1 it is su cient to prove that the fo rmula holds for a Dirichlet
polygon D. Suppose thatD hasn vertices (hencen sides).

We use the Gauss-Bonnet Theorem (Theorem 7.2.1). By Proposon 17.3.1, the angle
sum along thej ™ non-accidental elliptic cycle § is

sum(f) =

2
mj'
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Sl‘ : Sy

S3 S4

Figure 30.9 : A fundamental domain and side-pairing transformations fa the modular
group

Hence the sum of the interior angles of vertices on non-accahtal elliptic cycles is
X 2

j= M

Suppose that there ares accidental cycles. (Recall that a cycle is said to baccidental

if the corresponding elliptic cycle transformation is the identity, and in particular has

order 1.) By Proposition 17.3.1, the internal angle sum alorg an accidental cycle is
2 . Hence the internal angle sum along all accidental cycles i s .

Suppose that there arec parabolic cycles. The angle sum along a parabolic cycle must
be zero (the vertices must be on the boundary, and the angle li&een two geodesics
that intersect on the boundary must be zero).

As each vertex belongs to either a non-accidental elliptic gcle, to an accidental cycle
or to a parabolic cycle, the sum of all the internal angles oD is given by
0 1
X
2 @ — +5A:
., M
j=1

By the Gauss-Bonnet Theorem, we have
0 1

X
Areay(D)=(n 2) 2 @ — SA (30.4)
j=t

Consider now the spaceH=. This is formed by taking D and glueing together paired
sides. The vertices along each elliptic cycle, accidentalycle and parabolic cycle are
glued together to form a vertex in H=. Hence the number of vertices in H= is equal

to the number of cycles (elliptic, accidental and parabolig; henceD corresponds to a
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triangulation of H= with V = r + s+ c vertices. As paired sides are glued together,
there areE = n=2 edges. Finally, as we only need the single polygoD, there is only
F =1 face. Hence n

2 29= (H=)= r+s+c §+l

which rearranges to give

n 2=2(r+s+c¢c (2 29): (30.5)

Substituting (30.5) into (30.4) we see that
0 1

Areay(D)

X 1
2 @+s+c (2 29 — sA
0 |

X 1
2 @29 2)+ 1 = + A

(iif) We must show that
X 1

(2g 2)+ 1 — +c¢

j=1

(30.6)

We assume thatc 1.

Ifg 1then2g 2+ c 1> 1=6, so that (30.6) holds. So it remains to check the
cases wherg = 0.

fg=0andc 2then2g 2+c 0. Asl 1=m, 1=2, it follows that the
left-hand side of (30.6) is at least £2. Hence (30.6) holds. So it remains to check the
cases wherg=0and c=1.

fg=0andc=1then2g 2+c= 1. Asm; 2, weseethatl 1=m; 1=2.
Hence ifr 3 then the left-hand side of (30.6) is at least 1/2. Hence (3@) holds. It
remains to check that case wherg=0, c=1and r = 2.

In this case, it remains to check that

1 1 1
s(k;l)=1 « 1T &6
(letting k = mj;l = my). We may assume thatk I. Now s(3;3) = 1=3 > 1=6

and s(3;1) 1=3 forl 3. Hence we may assume thak = 2. Then s(2;2) = 0,
s(2;3) =1=6 and s(2;l) > 1=6. Hence the minimum is achieved foik =2;| = 3.

Hence the minimum is achieved for a Fuchsian group with signare (0;2;3;1). By
part (i), this is the signature of the modular group.

Solution 23.1

Let (X;d) be a metric space and suppose thaK X is compact andF K is closed. We

showF is compact. Letx, 2 F be a sequence; we have to show that, has a subsequence
that converges to a limitin F. AsF K, we havex, 2 K. As K is compact, there exists

a subsequencen, ! x 2 K. As xp; 2 F and F is closed, Proposition 23.2.2 shows that
x 2 F. HenceF is compact.
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Solution 23.2

Let (X;d) be a metric space and suppose that : X ! X is an isometry. Letx 2 X. Let
"> 0 and choose = ". Then if d(x;y) < we have thatd( (x); (y)) = d(x;y) ="
Hence is continuous at x. Hence is continuous asx is arbitrary.

Solution 23.3

We prove (i) implies (ii). If Y is discrete then every point is isolated. Hence ik 2 Y, there
exists" > 0 such that B-(x)\ Y = fxg. Suppose thatx, 2 Y is such that x, ! x. Then
there exists N such that if n N then d(x,;x) <", i.e. X, 2 B»(x). Hencex, = X if
n N.

We prove (ii) implies (i). Suppose that (ii) holds but that Y is not discrete. Then there
exists x 2 Y and a sequencé', ! 0 such that there existsx, 2 B-,(x) but x, & x. The
sequencex, converges tox, but x, 6 X; this contradicts (ii).

Solution 23.4

Let x 2 X, a group of homeomorphisms actingonX, and let Stab (x)=f 2 | (x)=
xg. Clearly id 2 Stab (x). Let 1; 22 Stab (x). Then 1 »2(x)= 1( 2(x)) = 1(X) = X,
sothat ; 2 Stab (x). Finally, suppose that 2 Stab (x). Then %(x) = x if and only
if (x)= x. Hence 12 Stab (x). Hence Stab (x) is a subgroup.

Solution 23.5
Let = Meb( H) be the group of all Mebius transformations of H. Clearly, (i) = f (i) ]
2 Meb(H)g is equal to H; this is immediate from the fact that we can move the paint i
to any other point of H by using a Mebius transformation of H.
Let 2 Stab (i). Write

+
(2) = az b; a;b;c;d2 R; ad bc=1:
cz+d

Then (i) = i implies that (ai + b)=(ci + d) = i, equivalently ai + b= ¢+ di. Comparing
coe cients we have that a= dand b= c. Substituting this into ad bc= 1 we have that
a?+ b? = 1. Hence we can choose 2 [0;1] such thata=cos2 ,b=sin2 . Hence

cos(2 )z+sin(2 ) .
sin(2 )z+cos(2 )’

(2) =

Hence Stab (i) is the group of Mebius transformations of H that are “rotations' around i.

Solution 23.6

Let = PSL(2 ;Z). Let 2 Stab (i) and write (z) = (az+ b)=(cz+ d), a;b;c;d2 Z,
ad bc=1. Then (i) = i implies that (ai + b)=(ci+ d) = i, equivalently ai + b= c+ di.
Comparing coe cients we have that a= d and b= c¢. Substituting this into ad bc=1
we have thata?+ b2 = 1. As a and b are integers, we must have that eithera= 1 and
b=0ora=0and b= 1. Hence (z)= zor 1=z Hence Stab (i) = fid;z7! 1=zg.

Solution 23.7

Let =PSL(2 ;Z). Let b=d2 Q with b;d2 Z, d 6 0 and b;d coprime. By the Euclidean
algorithm, there exist integers a;c such that ad bc=1. Let (z) = (az+ b)=(cz+ d).
Then (0) = b=d Clearly if (z)= 1=zthen (0)= 1 . Hence (0)= Q[flg

() Let K =[0;1] @ andletx=0. Thenf 2 | (x) 2 Kgis clearly in nite as,
by the observation above, for anyb=d2 Q\ [0; 1] it contains a transformation of the
form (az + b)=(cz+ d) with a;b;c;d2 Z;ad bc= 1 and b;d coprime. There are
in nitely many such b;d
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(i) The orbit (0)= Q[flg is not a discrete subset of@.

(i) Let 2 Stab (0) and write (z) = (az+ b)=(cz+ d) with a;b;c;d2 Zandad bc=1.
Then (0) = 0 implies that b= 0. Hence ad = 1 and without loss of generality we
can takea= d=1. Hence

Stab (0)=  (2) = CZLﬂjczz

and this set is in nite.

Solution 23.8

As a straightforward counter-example to ‘compact interset discrete is nite', consider
K =[0;1] R,D=fl=njn2 Ng. Then K is compact andD is discrete, butK \ D = D
is in nite.

() Consider X = @H. Let = f ] n(X)=2"x;n 2 Zg (with (1 )= 1). Then
acts by homeomorphisms or@d. ConsiderK = [0; 1]; this is compact. Clearly (1) =
f2" j n 2 Zg and this set is discrete. HenceK \ (1) = f1;1=2;1=4;:::;1=2";::.q,
which is in nite.

(As an aside, note that this example shows that whilst a groupof Mebius transforma-

tions can act properly discontinuously onH, it need not act properly discontinuously
on @)

(i) As ( x) is discrete, choose' > 0 such that B-(x)\ ( x) = fxg. We claim that, for
al 2 ,wehave B-( (X))\ (x)=fxg. Lety2B-( (x))\ (x). Asy2 (x)we
can write y = g(x) for someg2 . As y= g(x) 2 B-( (x)) we have that

d( tg(x);x) = d(g(x); (x) = d(y; (x)) <™

Clearly g(x) 2 ( x). Hence 1g(x)2 B-(x)\ ( x), and it follows that  g(x) =
X. Hencey = g(x) = (x)sothat B-( (x))\ (x)=f (X)g.

(i) Supposethat ( x)is discrete and let” > 0be asin (ii). Firstnote thatif 1(x) 6 »(x)
then d( 1(x); 2(x)) ". (To see this, if d( 1(X); 2(x)) <" then 2(x) 2 B«( 1(x))\
( x) sothat »(x)= 1(x), a contradiction.)

Suppose for a contradiction that K \ ( x) is in nite. Choose distinct elements
n(x) 2 K\ (x)with ,(x)6 nm(xX),n6 m. As »(x) 2 K and K is compact,
there is a convergent subsequence. As convergent sequenees Cauchy sequences, it
follows that we can nd distinct element ,(X); m(x) such that d( (x); m(X)) <",

a contradiction.

Solution 24.1

Let X = R®andlet = fid; 1; »; sgwhere 1; »; 3 rotate X around the z-axis through
angles 90, 180 and 270 degrees respectively. Note that eveppint on the z-axis is xed
under every element of .

It is straightforward to see that acts properly discontinu ously. Let x = (x;y;z) 2 RS,
Then ( x) = fxgif z=0, and ( x) are the four corners of a square iz 6 0. Hence ( x)
is discrete for allx 2 R3. If z 6 0 then Stab (x) = fidg and if z = 0 then Stab (x) = .
Hence Stab (x) is nite for all x 2 RS,
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Take p = (0;0;0) to be the origin in R3. Then pis xed by every element of . Choose
pn = (0;0;z,) where z, ! 0. Then p, is also xed under every element of . Hence
any neighbourhood ofp contains a point that is xed under some (indeed, any) non-trivial
element of .

(This construction works because, unlike Mebius transfomations of H or D, it is very
easy for an isometry ofR® to have a large number|indeed, an entire line|of xed points .)

Solution 24.2
Take any z 2 H. The orbit ( z) is given by

(z)=fz+njn2Zg

Asn!l ,wehavethatz+n!1 . Similarlyy asn! 1 ,wehavethatz+n!1
Hence ()= flg .
Solution 24.3

Let , 2 () and suppose that ! 2 @. We have to show that 2 (). This is
clear from drawing a picture; here is how to prove it rigorousy.
As 2 (), foreach m there exists nm 2 such that
1

J nm(2) nj < 53

Let () = nn. We show that (y(2) ! asn!l . Let"> 0. As ,! | there
exists N3 2 N such that if n> N ; thenj , j<". ChooseN; such that 1=N, <" . Then
if n> maxfNj; N>g we have that

Fm@ 7 7 @ i+ in ]
2"

Solution 24.4

We work in the upper half-plane modelH for convenience. Suppose that 2 is hyperbolic.
By Proposition 11.2.1, is conjugate to the dilation z 7! kz for somek > 1. That is, there
exists 1 2 Meb(H) such that ;' 1(z) = kz. Then for any z2 H

M@= k"z112 @

asn!1l . Similarly ;* " 1(z)! Oasn! 1 . Hence the limit points of ;% " 1(2)
aref0;1g , the xed points of ; 1 1. Hence for anyz 2 H, "(z) has limit points equal

to the two xed points.

Solution 24.5 ,
Let p;g2 Z, g6 0 and let (z) = %12%

First note that the coe cients of  are integers and that (L+pg)(1 pg ( pA?=1.
Hence 2 PSL(2;2).

As ()=(1+ pg+1 po?=4, isparabolic. Hence the unique xed point of lies
in (PSL(2 ;Z)). By solving the quadratic equation

1+ pgz p? _
®z+(1 pg

it is easy to see that the xed point of is at the point p=g As p;qare arbitrary integers,
(PSL(2 ;Z)) contains Q. As (PSL(2 ;Z)) is closed, we must have that (PSL(2;Z)) = @M.
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Solution 24.6

(i) Take = fid; gwhere (z) = 1=z Take z = i. Then the orbit of i is (i) = fig,
which has no limit points on @4. Hence ()= ; and so has zero elements.

(i) Take = fz7!'z+ njn2 Zg. We saw in Exercise 24.2 that ()= flg , which has
one element.

(i) Take = fz 7! 2"zjn 2 Zg. Then, using the argument used in Exercise 24.4, we see
that ()= fO0;1g , which has two elements.

(iv) The limit set of the modular group PSL(2 ;Z) is equal to @1, which is uncountable
and, in particular, in nite.

Solution 25.1

Let = f "jn2 Zg We show that is abelian. This is clear:
n m - n+m - m+n - m n:

Solution 25.2

(i) Let be a discrete subgroup of R. Clearly 02 . Let a=inffx2 jx> 0g. Then
a > 0 as otherwise there would exist elementg, 2 suchthat x,! 0, contradicting
discreteness. Moreovera 2 . To see this, note that we can nd X, 2 such that
Xn ! a. As is discrete, there exists N > 0 such that x, = Xy, forall nym N.
Hencea = x, providedn N. Hencea?2 .

The setfnajn 2 Zgis a subgroup of . We claim that = fnajn 2 Zg. Suppose
not. Choosey 2 such that y 6 na. We may assume thaty > 0 (otherwise we
consider y). Then there exists an integerk such that ka <y < (k +1)a. Hence
y ka2 and0 <y ka<a, contradicting the choice of a.

(i) Let be a discrete subgroup of S' = fz 2 Cjjzj =1g. By discreteness there exists
z = €2 2 with the smallest argument a > 0. Discreteness also implies thama = 2
for somem 2 N (otherwise the sequence?; e?@;e32;::: would be dense in the circle).
A similar argument to the above then shows that = feka jk=0;1;::::m 1g.

Solution 25.3
Let g2 Cypp(Hy() SO that g = g. Suppose thatz is a xed point of , sothat (z)= z.
Then

(9(2) = o( (2) = 9(2)

so that g(z) is also a xed point of
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Solution 25.4

() Let (z2)= kz,k &1, and let g2 Cyppy( ). Write

az+ b
o(z) = et ad bc=1:
Then
(2) = kaz + kb, (2) = akz+ b,
9= —va 9 "~ ckz+ d

The matrices de ning these Mebius transformations have the same trace. Hence we
can compare coe cients to see thatkb= b(sob=0), ck= c¢(soc=0). Hence
9(z) =(a=dz= z.

(i) Let (z)= € zand let g2 Cyup(py( ). Write

zZ +
@= 7

where ; 2C,j j?j j>=1. Then

e z+¢é _elz+

Comparing coe cients shows that = 0. Hence g is a rotation.

Solution 25.5

@) 1; 22N (H) then
(12H(12) 1= 1( 2H 21) ll: 1H lle

sothat 1 22 N (H). Clearlyif 2N (H)then 12 N (H). Clearly the identity
isinN (H).

(i) Suppose that Ny H)() is not a Fuchsian group. Then there exists a sequence of
distinct elements 2 Nypp( 1y() such that ! Id but , 6 1d.

Let 2 . Then , ,1! asn!1l . As 2 Ny n)(), we see that
n nt2 .As isdiscrete, there exists N 2 Nsuchthatifn N then , 1= .
Hence , and commute ifn N. By Proposition 25.2.2, this implies that both

and have the same set of xed points.

As is not abelian, Proposition 25.2.2 implies that there exists g 2 which has a
di erent set of xed points to

But the same argument shows that , and g have the same set of xed points. This
is a contradiction.
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Solution 26.1

Suppose that is an in nite cyclic group generated by a parabolic element. By replacing
with a conjugate subgroup, we may assume that is generatedby z 7! z+1. The limit

set of this Fuchsian group is clearlyflg . Hence the limit set of has one element.

Solution 26.2
Let be a non-elementary group. We claim that contains a hyp erbolic element.

Suppose not, i.e. assume that contains only elliptic and paabolic elements.

First note that does not contain any elliptic elements. For if it did, by Proposi-
tion 26.1.1 there would exist a common Xxed point, and it would follow that ()= ;.

Hence there exists a parabolic element; 2 with xed point 2 @H. By replacing
with a conjugate subgroup we can assume that = 1 and 1(z)= z+1or 1(2)=2z 1.
We will assume that 1(z) = z +1; the case when 1(z) = z 1 is similar.

As is not elementary, it is not generated by ;. Moreover, suppose contains the
translation z 7! z+ b. If bis irrational then 1 and z 7! z+ b do not generate a discrete
subgroup. If b= p=qis rational, then both ; andz 7! z+ bare contained in the elementary
subgroup generated byz 7! z+ 1=q

Hence there exists » 2 such that 5 is not a translation. Write

az+ b
cz+d

2(2) =

with a;b;c;d2 Randad bc=1.
Suppose thatc=0. Then ,(z) =(az+ b)=d. If aé dthen » is hyperbolic and we are
done. Ifa= dthen 5 is a translation, and we chose , so that this does not occur.

Consider , !. Then
az+(an+ b

cz+(cn+ d)

2 1(2) =

which has trace
(21 =(a+ d+ cn)?

As ¢ 6 0, by choosingn su ciently large we see that ( 2 ') > 4. Hence , 1 is hyperbolic
for n su ciently large.

203



