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Today’s topic is mostly how to find the eigenvalues of a matrix (given the eigenvalues,
we learned last time how to find the eigenspaces).

1 The characteristic equation

Let A be an n x n matrix. A scalar A is an eigenvalue of A if and only if there is some
nonzero x such that

Ax = Ax, or equivalently (A — AI)x = 0.Therefore, A is an eigenvalue if and only if
(A — A )x = 0 has a nontrivial solution, which (by the invertible matrix theorem) happens
if and only if (A — AI) is not invertible. But this is equivalent to det(A — AI) = 0.

We have just proved the following theorem:

Theorem 1.1. A scalar X is an eigenvalue of A if and only if it satisfies the characteristic
equation

det(A — \I) =0.
Example 1.2. Find the eigenvalues and eigenvectors of
311
A=10 2 2
00 2

Notice that this matrix is upper triangular, so our previous theorem gives us that the
eigenvalues are the diagonal entries 3,2. We can also use the characteristic equation:

3—A 1 1
det(A—A)=det| 0 2-X 2 |=(@3-N2-N2-))=0,
0 0 2-2\

which gives the roots A = 3,2, and 1. Finding the eigenvectors corresponding to 2:



111
A-21=10 0 2|,
000

and augmenting and finding the RREF gives us that the eigenspace is spanned by

-1
1
0

The eigenspace corresponding to the eigenvalue 3 is spanned by the vector (1,0,0) (I
leave this to you to check).

Proposition 1.3. Given an nxn matriz A, the function det(A—A\I) (regarded as a function
of A) is a polynomial of degree n. We call it the characteristic polynomial.

Since the characteristic equation has the form polynomial = 0, an eigenvalue can appear
multiple times as a root of the characteristic equation (for instance, the equation (A—1)% =0
has 1 as a double root).

Definition 1.4. An eigenvalue )\ of the matrix A has algebraic multiplicity k if its
multiplicity as a root of the characteristic equation is k. So a double root of the characteristic
equation has algebraic multiplicity 2, etc.

Example 1.5. A 10 x 10 matrix A has characteristic polynomial

A0 — 2B

What are its eigenvalues and their algebraic multiplicities?

We can factor the polynomial to get A*(A\? — 1) = A3(A + 1)(A — 1). So there are three
eigenvalues: 0,1, and —1. The eigenvalue 0 has algebraic multiplicity 8 and the others have
algebraic multiplicity 1.

2 Similarity

Definition 2.1. Two n X n matrices A and B are similar if there is some invertible matrix
P such that

B =P AP (1)

Note that the definition is symmetric: if there is matrix such that (1) holds, then mul-

tiplying on the left by P and on the right by P~! gives A = PBP~!, and since P! is
invertible, we see that the same condition holds.

Similarity is important because two matrices that are similar represent the same linear
transformation after a change of basis. We will return to this point soon. Right now, we
will focus on one aspect of this fact:



Theorem 2.2. If A and B are similar, then they have the same characteristic polynomaial
and eigenvalues.

Proof.

det(B — M) = det(P~'AP — AP~'P)
=det(P~Y(A - \)P)
= det(P~ 1)det(A Al) det(P)
= det(A — \I),

since 1 = det(I) = det(PP~1) = det(P) det(P~1).
O]

However, if A and B have the same eigenvalues, they are not necessarily similar, so there
is no converse to the above theorem in general.

3 An application and motivation for what comes next

If the eigenvectors of A form a basis for R”, then a lot of problems are made easier.

Say we have a sequence (a dynamical system, to use the term Lay likes) of vectors
{x)} such that

Xp1 = Axp = AFflxg for all k (think back to Markov chains for a special class of
dynamical systems; note that most dynamical systems are not Markov chains). If the eigen-
vectors of A form a basis {by,...,b,} (with eigenvalues A;,...,\,) for R" then we can
write xg = ¢1by + ... ¢, b, so

Xp = i Mby + ..+ e\,

3.1 Fibonacci numbers

Here is an application to show why this is useful. The Fibonacci numbers are a sequence of
numbers defined by

Fo=0F =1, and F,=F, 1+ F,_5 for larger n.

This sequence describes the number of breeding pairs of rabbits at generation n in a
simple model for rabbit breeding.

The short description: we start with one pair of rabbits (F}; = 1), they mate and undergo
one month of pregnancy and so the number of rabbits is unchanged (F» = 1), then the third
month the female gives birth and we have 2 pairs (F3 = 2), and in general:

e The number of pairs of rabbits alive in month n is equal to the number of pairs of
rabbits alive in month n — 1 plus the number of rabbits alive at time n — 2.



It is a simply defined sequence of numbers and the model is intuitively interesting. Yet,
it is not clear how to find the number of rabbits alive at time n without doing a lot of tedious
adding. We will show how to get around this problem using eigenvectors.

Defining the vectors

X, = | F
n - _Fn_l 9
then for n > 1, the vectors {x,} obey the equation Ax,,; = Ax,, where
(11
It is not hard to show that the eigenvalues of this matrix are
1 1
A= g1+ VE), A= o= V5).

Since there are two eigenvalues, the eigenvectors of A form a basis for R? (why?). The
eigenspace corresponding to \; is spanned by

_ {(1/2)(1 + \/5)}
Vi =
1
and the eigenspace corresponding to A, is spanned by

v [0 V9],

Since x; = (1,0), we can write x; = (vi — v)/V/5.
Therefore
/\]f_lvl — )\]5_1V2
Xk = )
V5

and so the nth Fibonacci number is given by

() - ()
2 2
F, = .
V5
It is quite a surprise that although the Fibonacci numbers are all integers, the number
/5 is so important in finding them!




