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Today’s topic is mostly how to find the eigenvalues of a matrix (given the eigenvalues,
we learned last time how to find the eigenspaces).

1 The characteristic equation

Let A be an n × n matrix. A scalar λ is an eigenvalue of A if and only if there is some
nonzero x such that

Ax = λx, or equivalently (A − λI)x = 0.Therefore, λ is an eigenvalue if and only if
(A− λI)x = 0 has a nontrivial solution, which (by the invertible matrix theorem) happens
if and only if (A− λI) is not invertible. But this is equivalent to det(A− λI) = 0.

We have just proved the following theorem:

Theorem 1.1. A scalar λ is an eigenvalue of A if and only if it satisfies the characteristic
equation

det(A− λI) = 0.

Example 1.2. Find the eigenvalues and eigenvectors of

A =

3 1 1
0 2 2
0 0 2

 .
Notice that this matrix is upper triangular, so our previous theorem gives us that the

eigenvalues are the diagonal entries 3, 2. We can also use the characteristic equation:

det(A− λI) = det

3− λ 1 1
0 2− λ 2
0 0 2− λ

 = (3− λ)(2− λ)(2− λ) = 0,

which gives the roots λ = 3, 2, and 1. Finding the eigenvectors corresponding to 2:
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A− 2I =

1 1 1
0 0 2
0 0 0

 ,
and augmenting and finding the RREF gives us that the eigenspace is spanned by

−1
1
0

 .

The eigenspace corresponding to the eigenvalue 3 is spanned by the vector (1, 0, 0) (I
leave this to you to check).

Proposition 1.3. Given an n×n matrix A, the function det(A−λI) (regarded as a function
of λ) is a polynomial of degree n. We call it the characteristic polynomial.

Since the characteristic equation has the form polynomial = 0, an eigenvalue can appear
multiple times as a root of the characteristic equation (for instance, the equation (λ−1)2 = 0
has 1 as a double root).

Definition 1.4. An eigenvalue λ of the matrix A has algebraic multiplicity k if its
multiplicity as a root of the characteristic equation is k. So a double root of the characteristic
equation has algebraic multiplicity 2, etc.

Example 1.5. A 10× 10 matrix A has characteristic polynomial

λ10 − λ8.
What are its eigenvalues and their algebraic multiplicities?
We can factor the polynomial to get λ8(λ2 − 1) = λ8(λ + 1)(λ − 1). So there are three

eigenvalues: 0, 1, and −1. The eigenvalue 0 has algebraic multiplicity 8 and the others have
algebraic multiplicity 1.

2 Similarity

Definition 2.1. Two n×n matrices A and B are similar if there is some invertible matrix
P such that

B = P−1AP. (1)

Note that the definition is symmetric: if there is matrix such that (1) holds, then mul-
tiplying on the left by P and on the right by P−1 gives A = PBP−1, and since P−1 is
invertible, we see that the same condition holds.

Similarity is important because two matrices that are similar represent the same linear
transformation after a change of basis. We will return to this point soon. Right now, we
will focus on one aspect of this fact:
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Theorem 2.2. If A and B are similar, then they have the same characteristic polynomial
and eigenvalues.

Proof.

det(B − λI) = det(P−1AP − λP−1P )

= det(P−1(A− λI)P )

= det(P−1) det(A− λI) det(P )

= det(A− λI),

since 1 = det(I) = det(PP−1) = det(P ) det(P−1).

However, if A and B have the same eigenvalues, they are not necessarily similar, so there
is no converse to the above theorem in general.

3 An application and motivation for what comes next

If the eigenvectors of A form a basis for Rn, then a lot of problems are made easier.
Say we have a sequence (a dynamical system, to use the term Lay likes) of vectors

{xk} such that
xk+1 = Axk = Ak+1x0 for all k (think back to Markov chains for a special class of

dynamical systems; note that most dynamical systems are not Markov chains). If the eigen-
vectors of A form a basis {b1, . . . ,bn} (with eigenvalues λ1, . . . , λn) for Rn, then we can
write x0 = c1b1 + . . . cnbn, so

xk = c1λ
k
1b1 + . . .+ cnλ

k
nbn.

3.1 Fibonacci numbers

Here is an application to show why this is useful. The Fibonacci numbers are a sequence of
numbers defined by

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for larger n.

This sequence describes the number of breeding pairs of rabbits at generation n in a
simple model for rabbit breeding.

The short description: we start with one pair of rabbits (F1 = 1), they mate and undergo
one month of pregnancy and so the number of rabbits is unchanged (F2 = 1), then the third
month the female gives birth and we have 2 pairs (F3 = 2), and in general:

• The number of pairs of rabbits alive in month n is equal to the number of pairs of
rabbits alive in month n− 1 plus the number of rabbits alive at time n− 2.
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It is a simply defined sequence of numbers and the model is intuitively interesting. Yet,
it is not clear how to find the number of rabbits alive at time n without doing a lot of tedious
adding. We will show how to get around this problem using eigenvectors.

Defining the vectors

xn =

[
Fn

Fn−1

]
,

then for n ≥ 1, the vectors {xn} obey the equation Axn+1 = Axn, where

A =

[
1 1
1 0

]
.

It is not hard to show that the eigenvalues of this matrix are

λ1 =
1

2
(1 +

√
5), λ2 =

1

2
(1−

√
5).

Since there are two eigenvalues, the eigenvectors of A form a basis for R2 (why?). The
eigenspace corresponding to λ1 is spanned by

v1 =

[
(1/2)(1 +

√
5)

1

]
and the eigenspace corresponding to λ2 is spanned by

v2 =

[
(1/2)(1−

√
5)

1

]
.

Since x1 = (1, 0), we can write x1 = (v1 − v2)/
√

5.
Therefore

xk =
λk−11 v1 − λk−12 v2√

5
,

and so the nth Fibonacci number is given by

Fn =

(
1+
√
5

2

)n
−
(

1−
√
5

2

)n
√

5
.

It is quite a surprise that although the Fibonacci numbers are all integers, the number√
5 is so important in finding them!
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