Diagonalization Lay 5.3

November 8, 2013

1 The importance of diagonal matrices

We talked last time about how easy it is to compute the action of a matrix on eigenvectors. It is even easier if the matrix is diagonal, since its eigenvectors are the standard basis. Notice that if D is a diagonal matrix–for instance,

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix},$$

then

$$D\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Dx_1\mathbf{e}_1 + Dx_2\mathbf{e}_2 = 3x_1\mathbf{e}_1 + 7x_2\mathbf{e}_2 = \begin{bmatrix} 3x_1 \\ 7x_2 \end{bmatrix}.$$

It is also trivial to compute matrix powers:

$$D^2 = \begin{bmatrix} 9 & 0 \\ 0 & 49 \end{bmatrix}, \quad \text{etc.}$$

It is also easy to compute matrix powers if A is similar to a diagonal matrix D:

Example 1.1. Let

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = PDP^{-1},$$

Where

$$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, D = \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}, P^{-1} = \begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}.$$

Then

$$A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1} = PDP^{-1} = P\begin{bmatrix} 4 & 0 \\ 0 & 16 \end{bmatrix}P^{-1}.$$

Similarly, for any positive integer k, $A^k = PD^kP^{-1}$.

2 Diagonalization

Definition 2.1. We say a matrix A is **diagonalizable** if it is similar to a diagonal matrix D.

Theorem 2.2. An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. In fact, D is a diagonal matrix with $A = PDP^{-1}$ if and only if P is a matrix whose columns are n linearly independent eigenvectors of A. In this case, the nth diagonal entry in D corresponds to the nth column of P.

Proof. If $A = PDP^{-1}$ for a diagonal D, let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be the columns of P. Multiply on the right by P to see that AP = PD. Now notice

$$AP = \begin{bmatrix} A\mathbf{v}_1 & \dots & A\mathbf{v}_n \end{bmatrix}, \quad PD = \begin{bmatrix} \lambda_1\mathbf{v}_1 & \dots & \lambda_n\mathbf{v}_n \end{bmatrix},$$
 (1)

where λ_i is the *i*th diagonal entry of D. Matching column by column, we see that the columns of P are eigenvectors of A and must be independent, since P is invertible; moreover, λ_i is the eigenvalue corresponding to \mathbf{v}_i . On the other hand, if A has n independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$, then set $P = \begin{bmatrix} \mathbf{v}_1 & \ldots & \mathbf{v}_n \end{bmatrix}$. The columns of P are independent, so it is invertible. Let us define $D = P^{-1}AP$, so that $A = PDP^{-1}$ and therefore AP = PD. By the same reasoning as the first equation in (1), we have $AP = \begin{bmatrix} A\mathbf{v}_1 & \ldots & A\mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{v}_1 & \ldots & \lambda_n\mathbf{v}_n \end{bmatrix}$, where λ_i is the *i*th eigenvalue of A. Therefore, $PD = \begin{bmatrix} \lambda_1\mathbf{v}_1 & \ldots & \lambda_n\mathbf{v}_n \end{bmatrix}$. Since the columns of PD are linear combinations of the columns of P, and since the columns of P are linearly independent, it follows that D must be diagonal.

3 Diagonalization

We outline the diagonalization procedure for an $n \times n$ matrix A:

- Find the eigenvalues of A.
- Find bases for the corresponding eigenspaces.
- Figure out if you have n linearly independent eigenvectors. If the sum of dimensions of the eigenspaces of A is equal to n, you're set and the union of the bases for the different eigenspaces will consist of n linearly independent eigenvectors. Otherwise, it's not diagonalizable.
- P is the matrix whose columns are the eigenvectors.
- D is the matrix whose ith entry is the eigenvalue for the ith column of P.

Example 3.1. Diagonalize

$$A = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}.$$

The eigenvalues of A are $\lambda_1 = 4$ and $\lambda_2 = -2$. A basis for the λ_1 eigenspace is provided by

$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\},\,$$

and a basis for the λ_2 eigenspace is provided by

$$\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}.$$

Therefore, the matrices

$$D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix}.$$

The eigenvectors we chose within each eigenspace were independent because we found a basis. Note that the eigenvectors from different eigenspaces are *automatically* independent, as predicted by our theorem from before.

It is not true that every matrix is diagonalizable. However, it is easy to see the following theorem holds:

Theorem 3.2. If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

What about if there are not n eigenvalues? Then the following theorem takes care of things:

Theorem 3.3. If A is $n \times n$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$, then:

- For each k, the eigenspace corresponding to λ_k has dimension \leq the algebraic multiplicity of λ_k ;
- A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n (we actually noted this above already);
- A is diagonalizable if and only if (a) its characteristic polynomial factors into linear factors (i.e., if and only if it has n real roots, possibly having multiplicity bigger than one) and (b) the dimension of the eigenspace corresponding to each eigenvalue λ_k is equal to the algebraic multiplicity of λ_k ;
- If A is diagonalizable and if for each k, \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k , then the vectors in the union $\mathcal{B}_1 \cup \ldots \cup \mathcal{B}_k$ form a basis for \mathbb{R}^n of eigenvectors of A.