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Prediction of Order Direction

The problem: Given an order, predict its direction (i.e. buy or
sell).

Order types: limit buy order, a partial cancellation, a deletion,
etc.

Contribution: A novel classification (prediction) method for
order directionality.

A more general problem than trade classification problem

Use Support Vector Machines (SVM) for one stock of the
NASDAQ market
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Trade Classification Algorithms

PT : execution price of a trade T .
T ′: the trade right before T
T ′′: the previous trade closest to T with PT 6= PT ′′ .

Tick Rule
If PT > PT ′ , then T = Buy.
If PT < PT ′ , then T = Sell.
If PT = PT ′ , then (if PT > PT ′′ then T = Buy, else T = Sell).

Note that this algorithm is inconclusive in case there is no previous
trade T ′′ such that PT 6= PT ′′ .
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Trade Classification Algorithms (cont.)

Let Bid and Ask be the best bid and ask quotes at time t

Quote Rule
A trade is a Buy (Sell) if it is executed at a price that is higher
(lower) that the quote midpoint.

If PT > Bid+Ask
2 , then T = Buy.

If PT < Bid+Ask
2 , then T = Sell.

If PT = Bid+Ask
2 , then inconclusive.

The biggest disadvantage of this algorithm: it cannot determine
the direction of the trade if the execution price is the same as the
quote midpoint.
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Trade Classification Algorithms (cont.)

LR (Lee and Ready)

If PT = Bid+Ask
2 , use Tick Rule, else use Quote Rule.

EMO (Ellis et al.)

If (PT = Bid or PT = Ask), then use Quote Rule, else use
Tick Rule.
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Trade Classification Algorithms (cont.)

Decile Rule (Chakrabarty et al.)
The bid-ask spread is divided into deciles (10% increments).
Let s denote the spread: s = Ask − Bid and Mid = Ask+Bid

2

If (PT > Ask or PT < Bid or Mid − 0.2s ≤ PT ≤ Mid + 0.2s)
then use Tick Rule.

If (Mid + 0.2s < PT ≤ Ask or Bid ≤ PT < Mid − 0.2s)
then use Quote Rule.
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Support Vector Machines

f (x) = h(x)Tβ + β0 =
n∑

i=1

αiyi 〈h(x), h(xi )〉+ β0.

We use:
K (x , x ′) = exp(−γ||x − x ′||2).

1Image from: http://www.inf.unitru.edu.pe/revistas/2014/13.pdf
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Data

1 Time: seconds after midnight with decimal precision of at
least milliseconds and up to nanoseconds

2 Type: this is a categorical feature with 6 possible values:

1: submission of a new limit order.
2: partial cancellation of a limit order
3: total deletion of a limit order
4: execution of a visible limit order
5: execution of a hidden limit order
7: trading halt indicator

3 Order ID: unique order reference number

4 Size: number of shares

5 Price: dollar price
6 Trade Direction:

-1: Sell limit order
1: Buy limit order
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Feature Selection

Fundamental set of features F = {Size,Price}.

Secondary features S = {Time,Type,OrderId}

F1 = {Size,Price,Time,Type,OrderId}
F2 = {Size,Price}
F3 = {Size,Price,Time}
F4 = {Size,Price,Type}
F5 = {Size,Price,OrderId}
F6 = {Size,Price,Time,Type}
F7 = {Size,Price,Time,OrderId}
F8 = {Size,Price,Type,OrderId}
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Feature Selection (cont.)
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Parameter Optimization

Need to choose two parameters: (C , γ).

No a priori knowledge about what values of C and γ will work

Solution: simple grid search on the parameter space (C , γ) for
different powers of 2 for both parameters:
(2−3, 2−13), (2−1, 2−11), (21, 2−9), . . . .(215, 25).
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Parameter Optimization (cont.)
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Results
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Conclusions

SVMs Advantages

1 easily trained and can handle vast amounts of data

2 reliable and highly accurate for trade direction classification,
as shown by our experiments.

3 fast predictions imply viable alternative for real time order
(trade) classification problems

4 independent of any hypothesis about the structure or
functioning of a market

5 can be used in a wide variety of distinct markets.
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Conclusions (cont.)

SVMs Disadvantages

1 same as with any data-driven approach: does not provide the
user with an explanation of the underlying mechanism at work

2 you get no simple rules like Tick rule or Quote rule either
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Conclusions (cont.)

Two key points for SVM training: feature and parameter selection.

Both of these tasks can be automated to result in a highly
accurate model as compared to previous classification rules
available in the literature

We showed that for a particular data set SVM outperforms all
other proposed rules.
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Future Research

1 Test our method on more stocks and other exchanges than
NASDAQ and compare the results

2 Increase the efficiency and speed by parallelization

3 Test other machine learning formalisms: trees, logistic
regression, and neural networks
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