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Outline

Part 1: Simulation-Based Games 

Part 2: Combinatorial Markets 

Part 3: Empirical Mechanism Design (if time permits)
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Part 1: 
Learning Equilibria of Simulation-Based Games

Improved Algorithms for Learning Equilibria in Simulation-Based Games.  
Enrique Areyan Viqueira, Cyrus Cousins, Amy Greenwald.  

19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS20).

Learning Simulation-Based Games from Data.  
Enrique Areyan Viqueira, Amy Greenwald, Cyrus Cousins, Eli Upfal.  

18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS19).
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Learning Algorithms 

Experimental Results
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Simulation-Based Games

Game theory is the standard conceptual framework to analyze 
the interaction among strategic agents

At the heart of game theory is the notion of a Game - a 
mathematical object: players, actions, and utilities

Often, an analyst can specify a game description completely. But, 
there are games too complex to afford a complete description
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StarCraft: a real-time strategy game 

Hundreds of units and buildings, large strategy space 

Deepmind1 recently built the first AI to defeat a top player 

        Their parameterization of the game has an average of 

         legal actions at each step! 1026

Simulation-Based Games - Examples

[1] https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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Simulation-Based Games - Pervasive in Real Life

As fun as StarCraft might be, think of it as a toy model for 

important, real-world applications of multi-agent systems such as: 

 

      Electronic advertisement (TAC AdX - https://sites.google.com/site/gameadx/) 

      Energy markets (Power TAC - https://powertac.org/) 

      Industrial supply chains (ANAC-SCML http://web.tuat.ac.jp/~katfuji/ANAC2019/#scm) 

     etc. 
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Simulation-Based Games - Characteristics

Games are too complex to exactly compute expected utilities 
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Simulation-Based Games - Characteristics

Games are too complex to exactly compute expected utilities 

Many sources of complexity, in the StarCraft example 

   different terrains, units, actions, etc.

Nevertheless, in simulation-based games, one can obtain 

samples of utilities by running a game simulator
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Simulation-Based Games - Heuristics

Actions spaces are vast, so usually no optimal strategies are 

available. Instead, there are a few heuristics. 

10
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Plan for the rest of Part 1

High-level Goal: learn the equilibria of simulation-based games 

Formalize simulation-based games and their equilibria  

Learning algorithms and experimental results

11



/ 80

The "Game" Plan (a.k.a. Outline Part 1)

Simulation-based Games 

Mathematical Framework 

Learning Algorithms 

Experimental Results

12



/ 80

The "Game" Plan (a.k.a. Outline Part 1)

Simulation-based Games 

Mathematical Framework 

Learning Algorithms 

Experimental Results

13



/ 80

A Mathematical Model - Conditional and Expected Games

Let  be player 's utility when strategy profile  is playedup( ⃗s ) p ⃗s

14
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Let  be player 's utility when strategy profile  is playedup( ⃗s ) p ⃗s

Model randomness by postulating a set of conditions , such 

that given , we obtain a utility function  

𝒳
x ∈ 𝒳 up( ⃗s; x)

Given a distribution  over condition set , we define the 

expected utility 

𝒟 𝒳
ūp( ⃗s ) = 𝔼x∼𝒟[up( ⃗s; x)]

The expected game (the normal-form game with expected 

utilities) is then our model of a simulation-based game

14

, where  is agent's  strategy⃗s = (s1, s2, …, sn) si i
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A Mathematical Model - Empirical Games

Recall that, in practice, we only observe samples of the utilities of 

simulation-based games
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A Mathematical Model - Empirical Games

Recall that, in practice, we only observe samples of the utilities of 

simulation-based games

Given  samples:  

The empirical utility is the average:  

m up( ⃗s; x1), up( ⃗s; x2), ⋯, up( ⃗s; xm)
̂up( ⃗s ) = 1

m ∑m
i=1 up( ⃗s; xi)

The empirical game  has empirical utilities for every player and 

strategy profile

15



/ 80

Goal

 

Learn, with provable guarantees, all the equilibria of expected 
games given access only to empirical games 

(Other valid and interesting goals:  

     + recover one equilibrium, e.g., by following best-response dynamics)

16
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Approximation Framework

For simulation-based games,  are complex objects. We 

can't reasonably hope to compute the expected game exactly

𝒳, and 𝒟

Even if we could approximate each  (say, up to ), would that 

destroy the equilibria?

ūp( ⃗s ) ε

Definition: a strategy profile  is an -equilibrium if players don't 

have incentive to deviate, up to , fixing other players' strategies

⃗s ε
ε
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Approximating Equilibria - First Result

Theorem: (Recall-Precision)
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Learning Equilibria 

How to learn the approximate equilibria  

of a simulation-based game from sample data? 

How to learn an -uniform approximation of  

an expected game from sample data? 

ϵ

20

Original  
Goal

Mathematically 
Precise Goal
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How likely would you like 
the estimates to be? 
Failure tolerance δ

How much error are you 
willing to tolerate? 
Error tolerance ε

Learning Algorithms - A Baseline

We present two Probably Approximate Correct (PAC) algorithm 

to learn empirical games

PAC algorithm: given , learn some model (games!) up 

to error at most  and with probability at least 

ε, δ > 0
ε 1 − δ

The first algorithm is a baseline that uses Hoeffding's Inequality 
to estimate all utilities of a simulation-based game

Tuyls, K. et al.  
Bounds and dynamics for 
empirical game theoretic 

analysis, 2020.
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Learning Algorithms - Progressive Sampling with Pruning

Recall our goal: learn equilibria. Not all utilities we learn are 

relevant to get at equilibria. For example,

3, 3 0, 5

5, 0 2, 2

We don't need to learn "3" exactly, we just 
need to learn that "5">"3", up to errors.

Idea: take a few samples first, then take more samples of only those 

profiles that can't be refuted as part of an equilibrium

What value of  is enough to 
estimate the equilibrium of 

this game?

ε

ε < 1

Srow
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Initially, all  are active. Initial error  is "big".p, ⃗s ϵ0

While some target accuracy  is not reached ( ) or  

        we run out of sampling budget or  

        there are no more active 

ϵ ϵ < ϵt

p, ⃗s

• Sample all active , up to current error p, ⃗s ϵt

• For all active  ⃗s

• if  can be refuted as part of an equilibrium,  

then remove it from the active set

⃗s

• Decrease the target error ϵt+1 ← ϵt − constant

25
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Experimental Setup

We use GAMUT (gamut.stanford.edu) to generate games 

We use Gambit (www.gambit-project.org) for equilibria 

computation 

We developed a python library (github.com/eareyan/pysegta) 

that implements our learning algorithms and interfaces with both 

GAMUT and Gambit.

28
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Summary Part 1

We contribute an end-to-end methodology for the analysis of 

simulation-based games
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Summary Part 1

We contribute an end-to-end methodology for the analysis of 

simulation-based games

We prove tight bounds on the set of approximate equilibria of 

games learned from data

We present and empirically evaluate a learning algorithm that 

exploits strategic structure of games to save on samples

We contribute an open-source library that implements our 

learning algorithms www.github.com/eareyan/pysegta 
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Part 2: 
Learning Competitive Equilibria in Combinatorial Markets

Learning Competitive Equilibria in Noisy Combinatorial Markets  
Enrique Areyan Viqueira, Cyrus Cousins, Amy Greenwald. 

20th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS21).
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Outline - Combinatorial Markets

Model and Examples 

Noisy Combinatorial Markets 

Revisiting Pruning and Experiments
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Combinatorial Markets

Markets with indivisible goods 

Buyers can have complex preferences over bundles of goods

They can be very economically efficient: 

Flexibility to report complex preferences over a wide variety of 

outcomes might uncover value otherwise hidden 
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Combinatorial Markets, Examples
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Assumption: buyers exactly know their values for all bundles

However, this may not always be the case. Why?

Value for bundle might depend on unobservable factors, e.g., 

whether an event occurs or not

There might be too many goods, so heuristic or approximate 

methods might be used to obtain value estimates
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Noisy Combinatorial Markets (cont.)

43

vi(blue region) = ?

Our goal: to learn approximate competitive equilibria given access to value estimates

Unobservable factors: 
Future demand, 

Future competitors, 
Political factors, 

etc.
 

With 95% certainty
vi(blue region) = $1M ± ε
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In the worst case for the blue allocation:

W* = 11 − 2ε

In the best case when Anna gets :

W*1 = 2 + 2ε

Exploiting first-welfare theorem of economics, we prove:

If  is small enough ( ), there is no way thatε ε < 9/4

Anna gets just  at any competitive equilibrium.

Conclusion: we can safely stop learning Anna’s value  

for  and instead focus learning effort elsewhere.

W* = (10 ± ε) + (1 ± ε)

Blue Allocation’s Welfare

W*1 = +(1 ± ε)(1 ± ε)

Anna gets
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Solve welfare-max. allocation  for remaining buyers, itemsW*−(i,S)

If , then stop learning value W* > vi(S) + W*−(i,S) + f(ϵ) vi(S)
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Hard computational problem

Hard computational problem

We show it is enough to use an  
upper bound to retain guarantees



/ 80

Experimental Setup - Local-Synergy Value Model  (LSVM)

50



/ 80

Experimental Setup - Local-Synergy Value Model  (LSVM)

50

Five regional bidders and one national bidder



/ 80

Experimental Setup - Local-Synergy Value Model  (LSVM)

50

Five regional bidders and one national bidder

Large Markets! National bidder alone has value for  bundles218
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Target 
Error 

% Savings with 
Pruning (±4%)

Error guarantee 
(±0.01)

UM Loss 
(±0.0005)

1.25 18% 0.89 0.0011

2.50 11% 1.78 0.0018

5.00 -7% 3.59 0.0037

10.0 -35% 7.27 0.0072

95% confidence intervals over 50 draws of LSVM markets
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Summary Part 2

Extension of simulation-based games methodology to markets 

Development of pruning criteria exploiting economic theory 

Pruning results in substantial sample savings
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Part 3: 
Empirical Mechanism Design

Empirical Mechanism Design: Designing Mechanisms from Data. 
Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald. 

Uncertainty in Artificial Intelligence (UAI19).

On Approximate Welfare-and Revenue-Maximizing Equilibria for Size-Interchangeable Bidders.  
Enrique Areyan Viqueira, Amy Greenwald, Victor Naroditskiy. 

16th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS17).
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Mechanism Design

Mechanism design: designing games so that the ensuing behavior 

of agents, at equilibrium, leads to desirable outcomes. 

Examples abound:

Design of auctions

Designing negotiation protocols 

Design of college admission systems

etc.

Image credits: http://clipart-library.com/57

http://clipart-library.com/
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India

The Rules of the Game Matter

Ghana
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The space of all possible mechanisms is too vast!

We focus on optimizing the parameters of an existing mechanism.

How should a mechanism designer set parameters of a mechanism, 

given access only to data (or to a simulator capable of generating 

data) about the game under different choices of parameters?

e.g., How should an auctioneer set the reserve prices of an auction 

given access only to auction log data under different choices of 
reserve prices?

59
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Empirical Mechanism Design - Schematic

Enrique Areyan Viqueira      .      October 20, 2019      .      INFORMS—Seattle, Washington         Designing Mechanisms from Data 

Parameterized mechanism design (déjà vu)

— A set ч describes all
possible worlds (games)

— ѡ�in ч�is a “mechanism”

— Multiple players in each world
— Find an equilibria with 

choosen ѡ
— The designer measures an  

objective at equilibrium

Parameter search

Equilibria estimation

ʡ
Game 2 (ѡ2)

Game n (ѡn)

Game 1 (ѡ1)

ѡ��H�J��UHYHUVH�SULFHV��IRU�LQWHUQHW�DG�DXFWLRQV

7 
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 is a choice of parameters (e.g., a reserve price of $10)θ ∈ Θ

 is a -simulation-based game.Γθ = ⟨P, Sθ, uθ( ⋅ )⟩ θ

θ θ θ θ
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Electronic Advertisement Exchanges

At the heart of electronic advertisement are ad-exchanges: 

centralized locations that match supply to demand, typically 

though some kind of auction.

Advertisers might have different objectives, e.g., to immediately 

convert clicks into purchases, or to maintain brand awareness. 

We focus on brand-awareness advertisement where advertisers 

need to reach a certain number of potential customers, from 

certain demographics, for a fixed (pre-determined) budget
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Electronic Advertisement Exchanges - Schematic

Publishers

Impression 
Opportunity

Ad Exchange

Advertisement
Campaign

Advertisement
Campaign

Advertisement
Campaign

.

.

.

Bid

Bid

Bid

Ad NetworksAdvertisers

Maximize revenue 
through reserve prices
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Electronic Advertisement Exchanges - Model

Stage 1: the ad exchange announces , where

 is such that   is the reserve price for the th 

demographic or market segment.

⃗r ∈ ℝm
+

< r1, …, rm > ∈ Θ rj j
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Stage 1: the ad exchange announces , where

 is such that   is the reserve price for the th 

demographic or market segment.

⃗r ∈ ℝm
+

< r1, …, rm > ∈ Θ rj j

Stage 2: all agents submit their bids (produced by heuristic 

strategies we outline in the next slide). 

Stage 3: some fixed number of impression opportunities arrive, 

where the demographic of each is drawn from some distribution.

Stage 4: for each impression opportunity, the auctioneer runs an 

auction. Final allocation and payments are computed. 

Input: , Output: ad exchange revenue (sum of all payments).⃗r
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Electronic Advertisement Exchanges - Heuristics

We devised two heuristics for our experimental setup. 

⃗r ⃗r

⃗r

⃗r
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Electronic Advertisement Exchanges - Heuristics

We devised two heuristics for our experimental setup. 

 Walrasian or (Competitive) Equilibrium, denote by WE

Bidding based on an (approximate) competitive equilibrium. 

 Waterfall, denoted by WF

Bidding based on simulating the ad exchange dynamics.

Approximating equilibria in 
combinatorial markets, work 

of interest in its own right, 
(Areyan et al. AAMAS17)

⃗r ⃗r

⃗r

⃗r
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Experimental Setup

Draw  impression opportunities distributed in 8 market 

segments.

K = 500
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Draw  impression opportunities distributed in 8 market 

segments.

K = 500

We experiment with  agents, each allowed to chose from 

the two strategies mentioned before, i.e., S = {WE, WF}. 

N = 4

Design space is . Here,  is such that   is 

the reserve price for the th demographic or market segment.

Θ = ℝ8 < r1, …, r8 > ∈ Θ rj

j

The task then if to find an 8-dimensional vector of reserve prices 

 that maximizes the ad exchange revenue, at equilibrium.⃗r* ∈ Θ
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Experimental Results

Enrique Areyan Viqueira      .      October 20, 2019      .      INFORMS—Seattle, Washington         Designing Mechanisms from Data 

Results

11
All code available at github.com/eareyan/emd-adx

δ = 0.1
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Enrique Areyan Viqueira      .      October 20, 2019      .      INFORMS—Seattle, Washington         Designing Mechanisms from Data 

Results

11
All code available at github.com/eareyan/emd-adx

Each point of the plot involves learning a simulation-
based game, then solve for its equilibria, then compute F

δ = 0.1
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Empirical Mechanism Design 

Experiments - Ad Auctions

The "Design" Plan (a.k.a. Outline Part 3)
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Summary Part 3

We contribute an end-to-end methodology for the optimization 

of mechanisms' parameters.
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Summary Part 3

We contribute an end-to-end methodology for the optimization 

of mechanisms' parameters.

We empirically showed the effectiveness of our BO algorithms in 

a styled but rich simulation of electronic advertisement 

exchanges.
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