
CS B551 –Elements of Artificial Intelligence– Fall 2011 
 
 

Homework #5 
(Machine Learning) 

Due: 10/27/11 (5:15 pm) 
 
 

 
How to complete this HW: Either 1) type your answers in the empty spaces below each 
problem and print out this document, or 2) print this document and write your answers in the 
empty spaces on the printout.  Return the homework in class, during office hours, or slip it under 
the door of Info E 257 before 5:15 on Thursday, 10/27/11. 
 
Your name: Enrique Areyan 
 
Your email address:  
 
Note on Honor Code: You must NOT look at previously published solutions of any of these 
problems in preparing your answers. You may discuss these problems with other students in the 
class (in fact, you are encouraged to do so) and/or look into other documents (books, web sites), 
with the exception of published solutions, without taking any written or electronic notes. If you 
have discussed any of the problems with other students, indicate their name(s) here: 
N/A 
Any intentional transgression of these rules will be considered an honor code violation.  
 
General information: Justify your answers, but keep explanations short and to the point. 
Excessive verbosity will be penalized. If you have any doubt on how to interpret a question, tell 
us in advance, so that we can help you understand the question, or tell us how you understand it 
in your returned solution. 
 
Grading: 

Problem# Max. grade Your grade 
I 25  
II 25  
III 20  
IV 30  
Total 100  



I. Time series data (25 points) 
You are an IU basketball fan, and you want to learn a predictive model of the results of each IU 
possession.  The n’th possession is denoted as a random variable Xn, and Xn can be equal to 
either a basket (B), turnover (T) or foul (F).  As you are watching the game you make the 
following observations on 25 plays (grouped into groups of 5 just for readability): 
 
B, B, B, F, T, 
B, B, B, B, T, 
T, F, B, T, T, 
T, B, F, B, B, 
B, B, B, F, F 
 

1. Model this time series as a set of independent and identically distributed events (i.e., a 0-
th order Markov Chain).  That is P(Xn=x) = P(Xm=x) for all m and n.  What are the 
maximum likelihood parameters of the probability distribution over Xt? 
 

𝜃!! =

14
25   𝑖𝑓  𝑋 = 𝐵

5
25
  𝑖𝑓  𝑋 = 𝐹

6
25   𝑖𝑓  𝑋 = 𝑇

 

Note: 𝜃!! stands for the parameters of model 1. 
 

2. Now suppose the 1st order Markov model P(Xn=x|Xn-1=y) which depends on the outcome 
y at the prior time step.  For the first time step, assume P(X1=x) is identical to the 
distribution that you estimated in question 1.  What are the maximum likelihood 
parameters of the transition distribution? 
This are better formatted as a transition matrix: 
𝜃!! 𝑖|𝑗 = 
 
 

 

3. For each of the probabilistic models from Q1 and Q2, write an expression involving 
numerical values that gives the likelihood of the data.  Using a computer or calculate, 
evaluate the log of this expression. How do the likelihoods compare, and why? 
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Xt \ Xt-1 B F T 
B 9/24 2/24 2/24 
F 3/24 1/24 1/24 
T 2/24 1/24 3/24 
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= 14 log 14 + 5 log 5 + 6 log 6 − 25 log 25

= 14 ∗ 2.63+ 5 ∗ 1.60+ 6 ∗ 1.79− 25 ∗ 3.21 = −24.72 

For Q2: 
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= 10 log 9 + 6 log 2 + 6 log 3 + 3 log 1 − 25 log 24 =   −46.72 
 
 

4. Now use your probabilistic models from Q1 and Q2 to predict the value of Xn given the 
true value of Xn-1 observed in the data (for X1 just use the distribution P(X1)). Repeat this 
for all n.  What accuracy do you obtain using the classifier from Q1?   From Q2? 

For Q1: all predictions are B because is the value with the highest probability. Therefore, the 
accuracy obtained is 14/25 (the number of B over all possibilities). 

For Q2: At this point I’m still not sure how to do this. Could you please explain me what are we 
suppose to do here? Thanks :) 

5. Discuss the pros and cons of using maximum a posteriori (MAP) to estimate the model 
parameters in Q2.  What would you gain?  What would you sacrifice?  What decisions 
might be challenging? 

To use MAP we would have to get an estimate a better initial estimate than ML. We would have 
to estimate a prior distribution over the nine parameters in 𝜃!! 𝑖|𝑗 , which would be 
challenging. We would also have to optimize the posterior distribution, for wich we would need 
to use some sort of local search techniques. 

II. Statistical Learning (25 points) 

Consider building a probabilistic model of a dataset D=(x1,…,xn) in which each xi is a 
continuous nonnegative value. Consider the following hypothesis class: 

 
P(x|θ) = θ e -θ x 

 
which is parameterized by the single hypothesis parameter θ. Note that this is a proper 
probability distribution over the set of nonnegative x because it integrates to 1. This problem will 
have you derive the maximum likelihood estimate θML. 
 



1. Give the mathematical expression for the likelihood of the data 
 
L(D;θ) = P(D|θ) =  Πj P(dj|θ) = Π!𝜃𝑒!!!! = 𝜃𝑒!!!! 𝜃𝑒!!!! … 𝜃𝑒!!!! =   

𝜃!(𝑒!!!!𝑒!!!! … 𝑒!!!!) = 𝜃! 𝑒!!!!!!!!!⋯!!!! =   𝜃!𝑒!!(!!!!!!⋯!!!) = 𝜃!𝑒!! !!!  
 

2. Give the mathematical expression for the log-likelihood of the data 
 
l(D;θ) = log P(D|θ) = log 𝜃!𝑒!! !!! = log 𝜃! + log 𝑒!! !!! = 𝑛𝑙𝑜𝑔 𝜃 − 𝜃( 𝑋!)log  (𝑒)!  

= 𝑛𝑙𝑜𝑔 𝜃 −   𝜃Σ!𝑋!  

3. Give the mathematical expression for the derivative of the log-likelihood of the data 
 

dl/dθ(D;θ) =
!(!"#$ ! !!!!!!)

!"
= !(!"#$ ! )

!"
+ !(!!!!!!)

!"
= !

!
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4. Solve for θML, which is a value of θ that satisfies dl/dθ (D;θ) = 0.  How is the ML parameter 
value related to the average value of the dataset? 
𝑑𝑙
𝑑𝜃 =

𝑛
𝜃 − Σ!𝑋! = 0  ⟺

𝑛
𝜃 = Σ!𝑋!   ⇒   𝜃 =   1 !

!
!!!! 

 
Therefore, the ML parameter value is the result of 1 divided by the average value of the data set. 
(The “inverse” of the average) 
 

III. Decision Tree Learning (20 points) 

1. Suppose we generate a training set from a decision tree and then apply decision-tree learning 
to that training set.  Is it the case that the learning algorithm will eventually learn a tree that is 
consistent with the training set as the training-set size goes to infinity?  Is it the case that the 
learning algorithm will eventually return the correct tree as the training-set size goes to infinity?  
Why or why not? 

Answer: The learning algorithm will eventually learn a tree that represent a function that is 
equivalent to the function embodied in the original tree, but in general it might not be exactly the 
same tree. This is because the space of possible functions is huge and thus intractable, from 
which we can reason that the probability of finding the exact same tree goes to zero pretty 
quickly. However, because several logical functions may be implemented differently, we have a 
chance of finding a logically equivalent function. For this process to work, it is important to have 
all (or at least) most combination of attributes in the training set. 

 

2. Consider the following data set comprised of three binary input attributes A1, A2, and A3 and 
one binary output: 

Example A1 A2 A3 Output y 



x1 1 0 0 0 

x2 1 0 1 0 

x3 0 1 0 0 

x4 1 1 1 1 

x5 1 1 0 1 

Use the DTL algorithm in the slides of lecture 14 to learn a decision tree for these data.  Show 
the computations made to determine the attribute to split at each node. 

Start: 

Predicate # of misclassified examples 
A1 2 (x1,x2) 
A2 1 (x3) 
A3 2 (x2,x5) 
Best Predicate = A2 

 

 

 

 

Predicate # of misclassified 
examples 

A2=T ∧ A1 0  
A2=T ∧ A3 1 (x5) 
Best Predicate = A1 

 

 

 

 

 

CONCEPT ó A2 ∧ A1 

A2 
T F 

False ? 

A2 
T F 

False A1 
T F 

False True 



This is the final tree. It classifies all examples correctly. Note that we didn’t need to include A3 
to correctly classify all examples. 

IV. Function Learning (30 points) 
1. You have a dataset D of examples (xi,f(xi)) for i=1,…,n.  Consider fitting the parameter θ 

of the constant model g(x,θ) = θ to this dataset (i.e., the model ignores the x coordinate). 
 
Write down the equation that expresses the sum of squared errors E as a function of θ. 
 
E(θ) = Σ!(𝑓 𝑥! − 𝑔 𝑥! ,𝜃 )! = Σ!(𝑓 𝑥! − 𝜃)! 
 

2. Find the value of θ that minimizes E(θ) for D={(2,1), (4,7), (5,6), (6,8), (7,8)}.  You can 
do this either by hand, or using the fact that E’(θ)=0 at the minimum.  What is another 
name for this value? 
 
E 𝜃 = Σ! 𝑓 𝑥! − 𝜃 ! = 1− 𝜃 ! + 7− 𝜃 ! + 6− 𝜃 ! + 2 8− 𝜃 ! 
= 1− 2𝜃 + 𝜃! + 49− 14𝜃 + 𝜃! + 36− 12𝜃 + 𝜃! + 128− 32𝜃 + 2𝜃!) 
= 5𝜃! − 60𝜃 + 214,              𝐸! 𝜃 = 10𝜃 − 60. The minimum satisfy 𝐸! 𝜃 = 0 
Thus, 10𝜃 − 60 = 0 ⇒ 𝜃 = 6. Another name for this value is the average. 
 

3. Now consider the nonlinear model g(x,θ) = log(x*θ).  Write a computer program (in your 
language of choice) that uses gradient descent to find a θ that minimizes E(θ) for the 
dataset given above.  A template in Python code is given at 
http://www.cs.indiana.edu/classes/b551/gradient_template.py 
 
If you are using your own code, you may want to use the following expression for the 
derivative of E: 
 
      E’(θ) = Σi (2 / θ) ( log(xi*θ) – f(xi) ) 
 
In your implementation, use the starting value θ=50, step size 1.0, and run gradient 
descent for 1000 iterations.  Report the final value of θ and E(θ), and the y values for 
each of the datapoints in D. 
 

Optimized θ: 83.8982030544 
E(θ): 24.2032002811 
Predictions: 
[(2, 5.122751376097381), (4, 5.815898556657326), (5, 6.039042107971536),  
 (6, 6.221363664765491), (7, 6.375514344592749)] 
 
Code use for this part (only the relevant part) 

 def gradientDescent(theta0,alpha,iters): 
 x_old = 0 
 x_new = theta0 
 for i in range(iters): 
  x_old = x_new 
  x_new = x_old - alpha * dE(x_new) 
 return x_new 


