
CS B551: Homework 8 
This assignment is due on 12/8, by 5:15pm.  Submit your agent.py program on Oncourse, and bring your 

written answers to class or slip them under the door of Informatics East, Room 257. 

Multi-agent Planning With Limited Sensing 
In this assignment you will be programming agents that have limited sensors and that interact with 

other agents.  The job of each agent is to reach a goal position while avoiding other agents.  A partially-

observable Markov decision process framework, including a sensor, transition, and reward model, are 

provided to you.  Your assignment is to implement subroutines for belief updates and heuristic 

strategies for behaving in this environment. 

At the end of class, we will hold a tournament in which your agent, running this policy, will compete 

with the agents of all other students.  The tournament will test your agent alone and with one or more 

students in navigation, obstacle avoidance, and coordination tasks, and the agent that accumulates the 

highest average utility will be declared the winner.  As long as all of your code stays in agent.py, you are 

also free to modify the agent transition models, belief update functions, and anything else that you need 

in order to build a good agent.  Extra credit will be awarded to the top 3 agents. 

Running the Program 

To run the GUI, the Tkinter library must be installed in your Python distribution.  Most major Python 

distributions do include Tkinter.  Run the GUI with the command ‘python driver.py’. 

The right hand side depicts the agents moving around the environment as triangles.  You can choose 

between several example scenarios using the drop down menu on the left.  The ‘Step’ button performs 

one step of the agent simulation.  ‘Start’ animates multiple steps of the simulation, until the simulation 

ends or you press the ‘Pause’ button.  ‘Reset’ resets the simulation to the initial state.  The ‘Agent View’ 

drop-down allows you to change which agent’s beliefs and goals you are viewing.  The check boxes allow 

you to change what information is displayed on the grid.  Grid cells are shaded according to an agent’s 

beliefs about goals and/or objects (Green=goal distribution, Red=object distribution).  [Note: this belief 

is updated before each action is taken, so the belief that is shown is the agent’s belief just before arriving 

at the current state.] 

Code Structure 

The program consists of the following files: 

- agent.py: The bulk of the code is contained here.  Contains structures defining actions, states, 

transition models, sensor models, beliefs, and agent policies.  Your code should be placed into 

this file. 

- distribution.py: Subroutines for creating, querying, and manipulating probability distributions. 

The normalize subroutine should be useful in your project. 

- gridmap.py: Basic code for defining a map.  A search subroutine (search_path) is provided 

for use in your project. 



- multiagent.py: A multi-agent simulator.  You will not need to edit this file. 

- scenarios.py: A set of scenarios for testing your agents.  In question 4 you may need to edit this 

file in order to test new scenarios. 

- driver.py: The GUI driver program.  You will not probably need to edit this file. 

Agent Environment  

State/Actions. N agents move about on a grid.  The grid contains static obstacles (blocked off squares), 

and no two agents can occupy the same square.  Each agent has one of 8 directions (any of the 4 

primary directions plus 4 diagonals), and has 5 available actions: stay still, move forward, turn left, turn 

right, and move left +forward, and move right+forward.  Each agent has a goal square G that it tries to 

reach.  However, the location of the goal is not known, and instead the agent must look for it using its 

sensors. 

Sensors. For each agent, the N-1 other agents are considered as moving objects O1,…,ON-1.  The agent’s 

own pose QA=(x,y,d) is observable where x,y are the coordinates of the grid cell and d is the agent’s 

direction.  Each agent does not precisely sense its goal G or the position/orientation of O1,…,ON-1.  

Instead, it only contains a visual sensor that points in the forward direction and a proximity detector 

that detects nearby objects.  The visual sensor has a 90 field of view and reports only whether the goal is 

seen (a binary percept VG), and whether each object is seen (binary percepts VO1,…,VON-1). Occlusions are 

ignored – the sensor can “see” through walls and other objects. The proximity detector reports whether 

each object.  The proximity detector reports whether an object is within 2 units or less (binary percepts 

PO1,…,PON-1). These sensor models assumes that all objects are exactly associated to each percept (e.g., 

each agent has a unique color or markings).   The goal sensor is very accurate, so VG reports the visibility 

of the goal with 0% error.  The visual object sensor reports the incorrect value of VOi 5% of the time, and 

the proximity object sensor reports the incorrect value of POi 10% of the time. 

Utilities. Every step that the agent is not at its goal costs 1 unit of utility. If an agent hits a wall, it incurs 

a moderate cost (10).  If an agent hits another agent, it incurs a large cost (100).  No reward or cost is 

accumulated if the agent is on its goal. 

Multiple agents. Each of the N agents is moved in round-robin fashion.  When an agent takes a turn, it 

senses the current positions of other agents, computes an action, and executes the action all at once.  

(This simplifies the problem because an agent doesn’t need to worry about outdated percepts or 

multiple agents moving into the same square) 

Agent Architecture 

Sensing. Each agent in this problem maintains a probability distribution over goals and object states that 

gets updated after every step (this is performed in the Agent.sense method).  This is known as the 

agent’s belief state.  In Question 1 you will be implementing the subroutines that are needed to update 

the belief state properly following an observation (the Agent.update_belief method). 

Acting. After sensing, the agent’s Agent.act method is called.  The act function simply evaluates the 

agent’s policy on the current belief state.  You will be implementing and testing different policies in 

Questions 2-4. 



Representing and updating belief states. An agent’s belief state B(X) is a distribution over possible 

states X=(QA,G,QO1,…,QON-1), where the (x,y,d) pose of the agent  is denoted QA and the poses of other 

objects are denoted QO1,…,QON-1.  Each belief state B is represented in factored form – that is, the  

probability distribution B is the product of individual distributions: B(X) = I[QA]xBG(G)xBO1(QO1)x…xBON-

1(QON-1).  Here, I is the indicator function, BG is a distribution over goal positions G, and each BOi is a 

distribution over object pose QOi.  Letting the superscript t denote time, the belief update computes the 

distribution Bt+1 = P(Xt+1|St,Bt), with S the sensor reading. 

The agent has sensor and transition model for goals and each object.  The agent’s sensor and transition 

model for goals is correct: P(SG
t|Gt,QA

t) is deterministic, and goals don’t move so the transition model 

P(Gt+1|Gt) is just the identity function.  The agent’s object sensor model P(SOi
t|QOi

t,QA
t) is correct – in 

other words, it has the correct probabilities that describe the behavior of the real sensor – but its 

transition model P(QOi
t+1|QOi

t)is just an approximation.  This approximation is needed because it is 

difficult to model how agents interact (in fact, it is non-Markovian).  Instead, the transition model simply 

assumes that each object selects from one available action uniformly at random at every step. 

Questions 

1. The Agent.update_belief method calls two subroutines for updating goal and object 

beliefs.  But the implementations of these subroutines are missing. 

 

a) Implement Agent.update_goal_belief. This requires updating the set of goal 

positions consistent with the observation at the current state.  [Hint: consult the 

algorithm of slide 14 of class 22.] 

 

b) Implement Agent.update_object_belief.  This requires two steps: predict and 

update.  In the predict step, compute the belief on the object’s position before receiving 

the observation.  In the update step, compute the posterior distribution of object 

positions given the observation. [Hint: consult slides 9 and 18 of class 12.] 

 

To test whether you are updating the belief properly, you may use the ‘Goal Update Test’ and 

‘Object Update Test’ scenarios in the GUI.  

 

Written questions: 

a) Why does the uncertainty on object positions often grow, while the uncertainty on goal 

positions decreases? 

b) Does the factored belief state representation perfectly represent the true Bayesian posterior 

of the belief state, given the observation?  Why or why not?  Does your answer depend on the 

number of obstacles N? 

 

2. Implement the AgentGoalPursuingPolicy so that the agent always moves toward a the 

closest goal position that is consistent with its belief.  Part of this method is provided for you.  To 

start, use the search_path function found in gridmap.py.  But search_path returns a path 



of 2D grid cells, not poses, and this path does not necessarily respect the agent’s steering 

constraints.  Your implementation should then return actions to steer the agent along the 

chosen path. 

 

Written questions: 

In ‘Goal Seek Scenario 1’ the policy is given a small probability (5%) of choosing a random action.  

In ‘Goal Seek Scenario 2’, the policy performs goal seeking 100% of the time.  What differences 

in behavior do you observe?  Describe at least one possible method for solving ‘Goal Seek 

Scenario 2’ in a more efficient way than occasionally choosing a random action.  (You may wish 

to test such a method in preparation for Question 4). 

 

3. The AgentObstacleAvoidingPolicy is supposed to move the agent away from nearby 

obstacles.  The provided template code selects the action that minimizes the value of a potential 

field function (a local search).  This potential field is higher near obstacles, so the agent will try 

to steer around them when possible.  But the current implementation is not very effective.  If an 

obstacle is in front of the agent, the agent cannot immediately move backward, and turning left 

or right will not reduce the potential field value.  (In other words, the potential function has 

many plateaus). 

 

a) Evaluate the quality of the existing policy on the two obstacle avoidance scenarios 

‘Avoidance Scenario 1’ and ‘Avoidance Scenario 2’. 

 

b) Implement an improved policy.  We suggest two possible strategies: search deeper in 

the state space, or search on the grid and then steer toward the best grid cell. 

 

Written questions: 

a) Describe your improved policy.  What design decisions did you make, and why? 

b) Describe how your improved policy performs in simulation, compared to the original policy.  

Report how many times the “dumb” agents (B and C, respectively) collide with your agents 

over each run (each run is 100 steps). 

 

4. In AgentStudentPolicy, implement an agent that performs both goal seeking and obstacle 

avoidance.   (This will be the policy that will be tested in the tournament.) 

 

Written questions: 

a) Describe your strategy for integrating goal seeking and obstacle avoidance.  How do you 

trade off between these competing demands? 

b) Describe your strategy for handling uncertainty in goal and object positions. 

c) Use the simulator to evaluate how your custom strategy performs compared to your 

answers in Questions 3 and 4 on the ‘Avoidance…’, ‘Goal Seeking…’, and ‘Hallway…’ 

scenarios.  You may need to edit the constructors in scenarios.py in order to instantiate 



your AgentStudentPolicy class in place of AgentGoalPursuingPolicy and  

AgentObstacleAvoidingPolicy. 


