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Problem 1: Suppose that the number of accidents occurring daily in a certain plant has a Poisson distribution with an
unknown mean λ. Based on previous experience in similar industrial plants, suppose that our initial feeling

about the possible value of λ can be expressed by an exponential distribution with parameter θ =
1

2
. That

is, the prior density is
f(λ) = θe−θλ

where λ ∈ (0,∞). If there are 79 accidents over the next 9 days, determine:

a) the maximum likelihood estimate of λ.

b) the maximum a posteriori estimate of λ.

c) the Bayes estimate of λ

Solution: This situation can be modeled as having data set D = {xi}9i=1, where each xi = number of accidents in the

plant on day i, for 1 ≤ i ≤ 9. We do not have the value of each xi, but we know that
9∑
i=1

xi = 79.

a) Maximum Likelihood: by definition:

λML = argmax
λ
{p(D|λ)}

where the probability of a single observation xi given λ is p(xi|λ) =
λxie−λ

xi!
, since we assume a poisson

distribution for the number of accidents. From this it follows that the likelihood for a general the data
set D with n observations is:

p(D|λ) =
n∏
i=1

p(xi|λ) by independence of xi

=
n∏
i=1

λxie−λ

xi!
by assumption of Poisson distribution

=
λ

n∑
i=1

xi

e−nλ

n∏
i=1

xi!
arithmetic

This shows that the likelihood function is l(λ) =
λ

n∑
i=1

xi

e−nλ

n∏
i=1

xi!
. Instead of maximizing this function, let

us maximize the log-likelihood:

ll(λ) = log

λ
n∑

i=1
xi

e−nλ

n∏
i=1

xi!

 = log

(
λ

n∑
i=1

xi

e−nλ

)
− log

(
n∏
i=1

xi!

)
= log(λ)

n∑
i=1

xi − nλ−
n∑
i=1

log(xi!)

Maximize:

∂ll

∂λ
=

∂

∂λ

[
log(λ)

n∑
i=1

xi − nλ−
n∑
i=1

log(xi!)

]
=

n∑
i=1

xi

λ
− n
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Setting
∂ll

∂λ
= 0 we obtain λ =

n∑
i=1

xi

n
.

We can check that indeed this is a global maximum by checking the second derivative:

∂2ll

∂λ2
=

∂

∂λ


n∑
i=1

xi

λ
− n

 = −

n∑
i=1

xi

λ2
< 0

Since xi ∈ N for all i and λ2 > 0. Here we ignore the degenerate case where xi = 0 for all i.
Having check that we indeed have the global maximum, we can conclude:

λML =

n∑
i=1

xi

n
, where xi are i.i.d observations from a Poisson distribution

In our case: n = 9 and
n∑
i=1

xi = 79, hence λML =
79

9
, so an average rate of 8

7

9
.

b) Maximum a posteriori: by definition:

λMAP = argmax
λ
{p(D|λ)p(λ)}

where p(D|λ) = λ

n∑
i=1

xi

e−nλ

n∏
i=1

xi!
as computed in part a, and p(λ) = θe−θλ by assumption. Thus,

p(D|λ)p(λ) = λ

n∑
i=1

xi

e−nλ

n∏
i=1

xi!
· θe−θλ =

λ

n∑
i=1

xi

θe−λ(n+θ)

n∏
i=1

xi!

This function is to be maximized to obtain the maximum a posteriori. However, let us instead maximize
the log of this function:

log(p(D|λ)p(λ)) = log

λ
n∑

i=1
xi

θe−λ(n+θ)

n∏
i=1

xi!



= log

[
λ

n∑
i=1

xi

θe−λ(n+θ)

]
− log

[
n∏
i=1

xi!

]

= log(λ)
n∑
i=1

xi + log(θ)− λ(n+ θ)−
n∑
i=1

log(xi!)

Maximize:

∂

∂λ
[log(p(D|λ)p(λ))] = ∂

∂λ

[
log(λ)

n∑
i=1

xi + log(θ)− λ(n+ θ)−
n∑
i=1

log(xi!)

]
=

n∑
i=1

xi

λ
− (n+ θ)

Setting
∂

∂λ
[log(p(D|λ)p(λ))] = 0 we obtain λ =

n∑
i=1

xi

n+ θ
.

We can check that indeed this is a global maximum by checking the second derivative:

∂2

∂λ2
[log(p(D|λ)p(λ))] = ∂

∂λ


n∑
i=1

xi

λ
− (n+ θ)

 = −

n∑
i=1

xi

λ2
< 0
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Since xi ∈ N for all i and λ2 > 0. Here we ignore the degenerate case where xi = 0 for all i.
Having check that we indeed have the global maximum, we can conclude:

λMAP =

n∑
i=1

xi

n+ θ
, where xi are i.i.d observations from a Poisson distribution and λ has an exponential prior

In our case: n = 9,
n∑
i=1

xi = 79, and θ = 1/2 hence λMAP =
79

9 + 1/2
=

158

19
, so an average rate of 8

6

19
.

c) Bayes Estimate: by definition:

λB = E[λ|D] =
∞∫
0

p(λ|D)λdλ, i.e., the mean of the posterior distribution

where p(λ|D) = p(D|λ)p(λ)
p(D)

. Let us compute each piece separately:

p(D|λ)p(λ) = λ

n∑
i=1

xi

θe−λ(n+θ)

n∏
i=1

xi!
, wich we computed before

To compute p(D), we can marginalize over all values of λ:

p(D) =
∞∫
0

p(D|λ)p(λ)dλ marginalization

=
∞∫
0

λ

n∑
i=1

xi

θe−λ(n+θ)

n∏
i=1

xi!
dλ computed before

=
∞∫
0

λ

n∑
i=1

xi

θe−λ(n+θ)

n∏
i=1

xi!
dλ computed before

This integral is computable but there is an easier way. Instead of doing this integral, let us find the
functional form of the posterior by a proportionality argument:

p(D|λ)p(λ) = λ

n∑
i=1

xi

θe−λ(n+θ)

n∏
i=1

xi!
∝ λ

n∑
i=1

xi

e−λ(n+θ) , dropping all values that do not depend on λ

This shows that the posterior follows a Gamma distribution. Recall (or see reference [1]), that if X has
a Gamma distribution with parameters α, β ∈ (0,∞) then X has a pdf proportional to xα−1e−βx and
its mean is E[X] =

α

β
.

Therefore, the posterior p(D|λ)p(λ) has a Gamma distribution with parameters α =
n∑
i=1

xi + 1 and

β = n + θ. Now using the fact that we know what the mean of a Gamma distribution is, we can
conclude:

λB =
α

β
=

n∑
i=1

xi + 1

n+ θ

In our case: n = 9,
n∑
i=1

xi = 79, and θ = 1/2 hence λB =
79 + 1

9 + 1/2
=

160

19
, so an average rate of 8

8

19
.
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Problem 2: Let X1, . . . , Xn be i.i.d. Gaussian random variables, each having an unknown mean θ and known variance
σ2
0 . If θ is itself selected from a normal population having a known mean µ and a known variance σ2

a) what is the maximum a posteriori estimate of θ?
b) what is the Bayes estimate of θ?

Solution: a) Maximum a posteriori: by definition:

θMAP = argmax
θ
{p(D|θ)p(θ)}

where the probability of a single observation xi given θ and σ2
0 is p(xi|θ) =

1√
2πσ2

0

e
−
(xi − θ)2

2σ2
0 , since

we assume a normal distribution for Xi. From this it follows that the likelihood for a general the data
set D with n observations is:

p(D|θ) =
n∏
i=1

p(xi|θ) by independence of xi

=
n∏
i=1

1√
2πσ2

0

e
−
(xi − θ)2

2σ2
0 by assumption of Normal distribution

=
1

(2π)n/2σn0
e
−

n∑
i=1

(xi − θ)2

2σ2
0 arithmetic

Also, p(θ) =
1√
2πσ

e
−
(θ − µ)2

2σ2 .

Therefore,

θMAP = argmax
θ
{p(D|θ)p(θ)}

= argmax
θ


1

(2π)n/2σn0
e
−

n∑
i=1

(xi − θ)2

2σ2
0 · 1√

2πσ
e
−
(θ − µ)2

2σ2



= argmax
θ


1

(2π)(n+1)/2σn0 σ
e
−

n∑
i=1

(xi − θ)2

2σ2
0

−
(θ − µ)2

2σ2


As usual, let us take the log:

log(p(D|θ)p(θ)) = log

(
1

(2π)(n+1)/2σn0 σ

)
−

n∑
i=1

(xi − θ)2

2σ2
0

− (θ − µ)2

2σ2

Maximize:

∂

∂θ
[log(p(D|θ)p(θ))] = ∂

∂θ

log( 1

(2π)(n+1)/2σn0 σ

)
−

n∑
i=1

(xi − θ)2

2σ2
0

− (θ − µ)2

2σ2

 =

n∑
i=1

(xi − θ)

σ2
0

− (θ − µ)
σ2
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Setting
∂

∂θ
[log(p(D|θ)p(θ))] = 0 we obtain:

0 =

n∑
i=1

(xi − θ)

σ2
0

− (θ − µ)
σ2

=

(
n∑
i=1

xi)− nθ

σ2
0

− θ − µ
σ2

=

σ2(
n∑
i=1

xi)− σ2nθ − σ2
0θ + σ2

0µ

σ2
0σ

2

=⇒ by canceling σ2
0σ

2 > 0

0 = σ2(
n∑
i=1

xi)− σ2nθ − σ2
0θ + σ2

0µ

= −θ(σ2n+ σ2
0) + σ2(

n∑
i=1

xi) + σ2
0µ

=⇒

θ =

σ2(
n∑
i=1

xi) + σ2
0µ

σ2n+ σ2
0

We can check that indeed this is a global maximum by checking the second derivative:

∂2

∂λ2
[log(p(D|θ)p(θ))] = ∂

∂θ

 (
n∑
i=1

xi)− nθ

σ2
0

− θ − µ
σ2

 = − n

σ2
0

− 1

σ2
< 0

Since n > 0 and σ2
0 , σ

2 > 0.
Having check that we indeed have the global maximum, we can conclude:

θMAP =

σ2(
n∑
i=1

xi) + σ2
0µ

σ2n+ σ2
0

where xi are i.i.d observations from a Normal distribution and θ has a Normal prior

Note that an equivalent way of writing this, which is found more commonly in the literature (See [2]) is:

θMAP =

µ

σ2
+

n∑
i=1

xi

σ2
0

1

σ2
+

n

σ2
0

b) Bayes Estimate: by definition:

θB = E[θ|D] =
∞∫
−∞

p(θ|D)θdθ, i.e., the mean of the posterior distribution

If we try to compute all the integrals we will most likely have a hard time solving them explicitly.
Instead, as done in problem 1 part c), let us find the functional form of the posterior by a proportionality
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argument, i.e., by dropping all terms that do not depend on θ from p(D|θ)p(θ) we get:

p(D|θ)p(θ) ∝ exp


n∑
i=1

(xi − θ)2

σ2
0

+
(θ − µ)2

σ2


This form is a Normal distribution but to show this clearly we will need to complete squares for θ ([3]):

n∑
i=1

(xi − θ)2

σ2
0

+
(θ − µ)2

σ2
=

n∑
i=1

(x2i − 2xiθ) + nθ2

σ2
0

+
θ2 − 2θµ+ µ2

σ2

= θ2
(
n

σ2
0

+
1

σ2

)
− 2θ

 µ

σ2
+

n∑
i=1

xi

σ2
0

+


n∑
i=1

x2i

σ2
0

+
µ2

σ2


=

1

σ2
1

(θ − µ1)
2 + C

where C is a constant that does not depend on θ and µ1 =
µ

σ2
+

n∑
i=1

xi

σ2
0

and
1

σ2
1

=
n

σ2
0

+
1

σ2
. Thus,

p(D|θ)p(θ) ∝ exp{− 1

2σ2
1

(θ − µ1)
2}

which means that the posterior distribution is normal with mean µ1 and variance σ2
1 . The bayes estimate

is just the mean of this distribution, i.e., µ1:

θB = E[θ|D] = µ1 =
µ

σ2
+

n∑
i=1

xi

σ2
0

Problem 3: Let X1, . . . , Xn be i.i.d. random variables with distribution

f(x|α) = αx(1− α)1−x

where x ∈ (0, 1). Assuming that the unknown parameter α was selected from a (0, 1) uniform distribution
find the Bayes estimator of α.

Solution: Bayes Estimate: by definition:

αB = E[α|D] =
1∫

0

p(α|D)αdθ, i.e., the mean of the posterior distribution

Let us find the functional form of the posterior distribution by a proportionality argument, i.e., by dropping
all terms that do not depend on α from p(D|α)p(α) we get:

p(D|α)p(α) ∝

(
n∏
i=0

αxi(1− α)1−xi

)
· 1 = α

n∑
i=1

xi

(1− α)
n−

n∑
i=1

xi

By looking at reference [4.], we see that the posterior belongs to the Beta distribution with parameters

α = (
n∑
i=1

xi) + 1 and β = (n −
n∑
i=1

xi) + 1. Since the mean of a Beta distribution is given by
α

α+ β
, we

conclude that:

αB = E[α|D] = α

α+ β
=

(
n∑
i=1

xi) + 1

(
n∑
i=1

xi) + 1 + (n−
n∑
i=1

xi) + 1
=

(
n∑
i=1

xi) + 1

n+ 2

Note that since 0 < α < α+ β and 0 < β, we have 0 < αB < 1 as we are suppose to have.
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Problem 4: Consider the following minimization problem:

argmin
x
||Ax− b||

where A is a m-by-n, x is a n-by-1 vector and b is a m-by-1 vector (all vectors and matrices are real). Owing
to the fact that the row space and nullspace of A are orthogonal, any vector x ∈ Rn can be decomposed
as x = xr + xn, where xr lies in the row space of A and xn lies in the nullspace of A. Suppose now that
x̂ = x̂r + x̂n is one solution to the minimization problem above.

a) Prove that x̂ = x̂r + αx̂n, where α ∈ R, is also a solution to the minimization problem.

b) Prove that x̂r from above is common to all solutions that minimize ||Ax−b||. In other words, prove that
there is no other vector from the row space that can be combined with any vector from the nullspace to
minimize ||Ax− b||

Solution: a) By hypothesis, x̂ = x̂r + x̂n is one solution to the minimization problem above. Hence, we have that
the optimal value d ∈ R can be written as:

d = ||Ax̂− b|| since d is the optimal
= ||A(x̂r + x̂n)− b|| by definition of x̂
= ||Ax̂r +Ax̂n − b|| since A is a linear transformation (a matrix)
= ||Ax̂r + 0− b|| since x̂n is in the nullspace of A
= ||Ax̂r − b|| matrix and vector arithmetic

This shows that the optimal value d can be written as d = ||Ax̂r − b||. But consider:

||A(x̂r + αx̂n)− b|| = ||Ax̂r + αAx̂n − b|| since A is a linear transformation (a matrix)
= ||Ax̂r + α0− b|| since x̂n is in the nullspace of A
= ||Ax̂r − b|| matrix and vector arithmetic
= d by previous argument

Therefore, x̂ = x̂r + αx̂n is also a solution since it yields the optimal value d.

b) Let p be the projection of b to C(A). Geometrically we know that this is a solution to argmin
x
||Ax−b||.

In other words, the projection p is the closest vector to b formed by vectors from C(A). Since by
hypothesis x̂ = x̂r + x̂n in one solution, we must have:

p = A(x̂r + x̂n) = Ax̂r +Ax̂n = Ax̂r + 0 = Ax̂r =⇒ p = Ax̂r (∗)

Suppose now that there is another vector x∗r from the row space, where x∗r 6= x̂r, that can be combined
with any vector from the nullspace x∗n to minimize ||Ax− b||. In symbols, we have that:

p = A(x∗r + x∗n) = Ax∗r +Ax∗n = Ax∗r + 0 = Ax∗r =⇒ p = Ax∗r (∗∗)

Subtracting equation (∗) from (∗∗):

p− p = Ax∗r −Ax̂r =⇒ 0 = A(x∗r − x̂r)

This means that we have found a vector x∗r − x̂r 6= 0 (since x∗r 6= x̂r) that belongs to the nullspace of A.
However, by hypothesis, both x∗r and x̂r belong to the rowspace of A. We know that any linear
combination of elements in the rowspace is again in the rowspace, so in particular the linear combination
given by x∗r − x̂r is in the rowspace. This contradicts the fact that this vector belongs to the nullspace.
Therefore, there is no such x∗r .
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Problem 5: Expectation-Maximization. Let X be a random variable distributed according to pX(x) and Y be a random
variable distributed according to pY (y). Let DX = {xi}mi=1 be an i.i.d. sample from pX(x) and DY = {yi}ni=1

be an i.i.d. sample from pY (y). Let D = DX ∪DY . Furthermore, define pX(x) and pY (y) as follows:

pX(x) = αN(µ1, σ
2
1) + (1− α)N(µ2, σ

2
2)

and
pY (y) = βN(µ1, σ

2
1) + (1− β)N(µ2, σ

2
2)

where α ∈ (0, 1), β ∈ (0, 1), µ1 ∈ R, µ2 ∈ R, σ1 ∈ R+ and σ2 ∈ R+ are unknown parameters. N(µ, σ2) is a
univariate Gaussian distribution with mean µ and variance σ2.

a) Derive update rules of an EM algorithm for estimating µ1, µ2, σ1 and σ2 based only on data set DY

b) Derive update rules of an EM algorithm for estimating α, β, µ1, µ2, σ1 and σ2 based on data set D

Solution: In both cases the algorithm should follow the principle of maximizing the expected likelihood of complete
data, i.e., if Zi are hidden variables that indicate to which distribution observation i belongs, then we want
to maximize

EZ[log p(D, z|θ)|θt]

by using the formula
θ(t+1) = argmax

θ
{EZ[log p(D, z|θ)|θt]}

The parameters θ will be the mean and variance of the distributions as well as the mixing coefficients.

a) In this case let us derive update rules based only on data set DY .

I will use slightly different notation for now. In what follows, w1 = β and w2 = (1 − β). After de-
riving values for w1 and w2, I will convert back to β.
In this case m = 2 (two distributions), we get:

EZ[log p(D, z|θ)|θt] =
n∑
i=1

[
log(w1p(yi|θ1))pZi

(1|yi, θ(t)) + log(w2p(yi|θ2))pZi
(2|yi, θ(t))

]
(∗)

This is the equation we want to optimize, first with respect to w1 and w2, and then with respect to
µ1, µ2, σ1 and σ2.

For w1 and w2: In this case we note that this is a constrain optimization since w1 + w2 = 1. So,
by forming the Lagrangian with some constant c we get the following function, call it f :

f =

n∑
i=1

[
log(w1p(yi|θ1))pZi

(1|yi, θ(t)) + log(w2p(yi|θ2))pZi
(2|yi, θ(t))

]
+ c(w1 + w2)− 1

Now take partial derivatives and set to zero:

∂f

∂w1
=

n∑
i=1

[
pZi

(1|yi, θ(t))
w1

]
+ c = 0 =⇒ w1 = −

n∑
i=1

pZi(1|yi, θ(t))

c

∂f

∂w2
=

n∑
i=1

[
pZi

(2|yi, θ(t))
w2

]
+ c = 0 =⇒ w2 = −

n∑
i=1

pZi
(2|yi, θ(t))

c

Also,

w1 + w2 = 1 =⇒ −

n∑
i=1

pZi
(1|yi, θ(t))

c
−

n∑
i=1

pZi
(2|yi, θ(t))

c
= 1 =⇒

−
[
n∑
i=1

pZi
(1|yi, θ(t)) + pZi

(2|yi, θ(t))
]

c
= 1 =⇒

−
n∑
i=1

1

c
= 1 =⇒ −n

c
= 1 =⇒ c = −n
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So we can get rid c in w1 and w2 to get:

w1 =

n∑
i=1

pZi
(1|yi, θ(t))

n
and w2 =

n∑
i=1

pZi
(2|yi, θ(t))

n

But then switch back to β = w1 (and 1− β follows immediately) to get:

β =

n∑
i=1

pZi(1|yi, θ(t))

n

For µ1 and µ2: We will take the derivative of (∗) with respect to µk for k = 1, 2:

∂(∗)
∂µk

=
∂

∂µk

[
n∑
i=1

log(wkp(yi|θk))pZi
(k|yi, θ(t))

]
by definition of (∗)

=
n∑
i=1

pZi
(k|yi, θ(t))

[
∂

∂µk
log(wkp(yi|θk))

]
taking constants out

=
n∑
i=1

pZi(k|yi, θ(t))
[
∂

∂µk
{log(wk) + log(p(yi|θk)))}

]
properties of log

=
n∑
i=1

pZi(k|yi, θ(t))
[
∂

∂µk
log(p(yi|θk))

]
(∗∗) since log(wk) is a constant w.r.t µk

where p(yi|θk) =
1

σk
√
2π
e

−(yi − µk)
2

2σ2
k


and thus,

log(p(yi|θk)) = log

 1

σk
√
2π
e

−(yi − µk)
2

2σ2
k


 = log

[
1

σk
√
2π

]
− (yi − µk)2

2σ2
k

which means
∂

∂µk
log(p(yi|θk)) =

∂

∂µk

{
log

[
1

σk
√
2π

]
− (yi − µk)2

2σ2
k

}
=
yi − µk
σ2
k

Replacing into (∗∗) and setting to zero:

∂(∗)
∂µk

=
n∑
i=1

pZi(k|yi, θ(t))
[
yi − µk
σ2
k

]
replacing

∂

∂µk
log(p(yi|θk)) into (∗∗)

=
1

σ2
k

n∑
i=1

pZi(k|yi, θ(t))(yi − µk)

=
1

σ2
k

[
n∑
i=1

pZi
(k|yi, θ(t))yi − µk

n∑
i=1

pZi
(k|yi, θ(t))

]
= 0 =⇒ (since σk > 0)

µk =

n∑
i=1

pZi
(k|yi, θ(t))yi

n∑
i=1

pZi
(k|yi, θ(t))

Note that
∂2(∗∗)
∂µ2

k

=
1

σ2
k

∂

∂µk

[
n∑
i=1

pZi(k|yi, θ(t))yi − µk
n∑
i=1

pZi(k|yi, θ(t))
]
= −

n∑
i=1

pZi
(k|yi, θ(t))

σ2
k

< 0.
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since the term in the numerator is the sum of probabilities and hence always positive and the term
in the numerator is always positive since it is a square.

For σ1 and σ2: We will take the derivative of (∗) with respect to σk for k = 1, 2: Some of the work
has already been done. Let us recap:

∂(∗)
∂σk

=
n∑
i=1

pZi
(k|yi, θ(t))

[
∂

∂σk
log(p(yi|θk))

]
this is equation (∗∗), already computed

Where,
∂

∂σk
log(p(yi|θk)) =

∂

∂σk

{
log

[
1

σk
√
2π

]
− (yi − µk)2

2σ2
k

}
= − 1

σk
+

(yi − µk)2

σ3
k

Replacing this into the equation above and setting to zero:

∂(∗)
∂σk

=
n∑
i=1

pZi(k|yi, θ(t))
[
∂

∂σk
log(p(yi|θk))

]

=
n∑
i=1

pZi
(k|yi, θ(t))

[
− 1

σk
+

(yi − µk)2

σ3
k

]

= − 1

σk

n∑
i=1

pZi
(k|yi, θ(t)) +

1

σ3
k

n∑
i=1

pZi
(k|yi, θ(t))(yi − µk)2

= 0 =⇒ multiplying by σk

−
n∑
i=1

pZi
(k|yi, θ(t)) +

1

σ2
k

n∑
i=1

pZi
(k|yi, θ(t))(yi − µk)2 = 0 =⇒ σ2

k =

n∑
i=1

pZi
(k|yi, θ(t))(yi − µk)2

n∑
i=1

pZi(k|yi, θ(t))

An argument similar to the case for µk with the second derivative shows that this is a global maxi-
mum. (I will omit this argument here).

EM Algorithm: Following the class notes and the above derivation, the following is the EM Algorithm:

1. Initialize µ(0)
k , σ

(0)
k for k = 1, 2 and β(0)

2. Set t = 0.

3. Repeat until convergence

(a) pZi
(1|yi, θ(t)) =

β(t)p(yi|µ1, σ
2
1)

β(t)p(yi|µ1, σ2
1) + (1− β)(t)p(yi|µ2, σ2

2)
and pZi

(2|yi, θ(t)) = 1− pZi
(1|yi, θ(t))

(b) β(t+1) =

n∑
i=1

pZi
(1|yi, θ(t))

n

(c) µ(t+1)
k =

n∑
i=1

pZi
(k|yi, θ(t))yi

n∑
i=1

pZi(k|yi, θ(t))

(d) (σ2
k)

(t+1) =

n∑
i=1

pZi(k|yi, θ(t))(yi − µk)2

n∑
i=1

pZi
(k|yi, θ(t))

10



(e) t = t+ 1

4. Report µ(t)
k , (σ2

k)
(t) and β(t) for k = 1, 2.

where p(yi|µk, σk) is the pdf of a normal random variable with mean µk and variance σ2
k

b) In this case let us derive update rules based on data set D. This data set contains data from both pX
and pY . I am going to use the notation:

w1 =
n

n+m
β, w2 =

n

n+m
(1− β), w3 =

m

n+m
α, and w4 =

m

n+m
(1− α)

And hence:

w1+w2+w3+w4 =
n

n+m
β+

n

n+m
(1−β)+ m

n+m
α+

m

n+m
(1−α) = nβ + n(1− β) +mα+ (1−m)α

n+m
=
n+m

n+m
= 1

So that we have a mixture of 4 distributions (which in reality reduces to only 2 distributions, but the
calculations are the same) where each w is weighted by the number of points corresponding to the data
set from which it came (either DX with m points or DY with n points).

Now, the equation we want to optimize is:

EZ[log p(D, z|θ)|θt] =
n+m∑
i=1

[log(w1p(yi|θ1))pZi
(1|yi, θ(t)) + log(w2p(yi|θ2))pZi

(2|yi, θ(t))

+log(w3p(yi|θ2))pZi
(3|yi, θ(t)) + log(w4p(yi|θ2))pZi

(4|yi, θ(t))] (◦)

When we optimize equation (◦) to find values for wi, this essentially reduces to the computations done
in part a), but we will have to account for w3 and w4. Form the Lagrangian, where c is a constant:

f =
n+m∑
i=1

[log(w1p(yi|θ1))pZi(1|yi, θ(t)) + log(w2p(yi|θ2))pZi(2|yi, θ(t))

+log(w3p(yi|θ1))pZi(3|yi, θ(t)) + log(w4p(yi|θ2))pZi(4|yi, θ(t))] + c(w1 + w2 + w3 + w4)− 1

Now take partial derivatives and set to zero:

∂f

∂w1
=

n+m∑
i=1

[
pZi(1|yi, θ(t))

w1

]
+ c = 0 =⇒ w1 = −

n+m∑
i=1

pZi
(1|yi, θ(t))

c

∂f

∂w2
=

n+m∑
i=1

[
pZi(2|yi, θ(t))

w2

]
+ c = 0 =⇒ w2 = −

n+m∑
i=1

pZi
(2|yi, θ(t))

c

∂f

∂w3
=

n+m∑
i=1

[
pZi

(3|yi, θ(t))
w3

]
+ c = 0 =⇒ w3 = −

n+m∑
i=1

pZi
(3|yi, θ(t))

c

∂f

∂w4
=

n+m∑
i=1

[
pZi

(4|yi, θ(t))
w4

]
+ c = 0 =⇒ w4 = −

n+m∑
i=1

pZi
(4|yi, θ(t))

c

Also,

w1+w2+w3+w4 = 1 =⇒
−
[
n+m∑
i=1

pZi
(1|yi, θ(t)) + pZi

(2|yi, θ(t) + pZi
(3|yi, θ(t) + pZi

(4|yi, θ(t))
]

c
= 1 =⇒

−c =

[
n+m∑
i=1

pZi(1|yi, θ(t)) + pZi(2|yi, θ(t)) + pZi(3|yi, θ(t)) + pZi(4|yi, θ(t))

]
=

4∑
j=1

n+m∑
i=1

pZi(j|yi, θ(t))

11



So we can get rid c in w1, w2, w3 and w4 to get (for short, wk for k = 1, 2, 3, 4):

wk =

n+m∑
i=1

pZi
(k|yi, θ(t))

4∑
j=1

n+m∑
i=1

pZi(j|yi, θ(t))

But then switch back to β from w1 =
n

n+m
β, so β =

n+m

n
w1 (and 1−β follows immediately) to get:

β =

(
n+m

n

) n+m∑
i=1

pZi(1|yi, θ(t))

4∑
j=1

n+m∑
i=1

pZi
(j|yi, θ(t))

And switch back to α from w3 =
m

n+m
α (and 1− α follows immediately) to get:

α =

(
n+m

m

) n+m∑
i=1

pZi
(3|yi, θ(t))

4∑
j=1

n+m∑
i=1

pZi(j|yi, θ(t))

For µ1 and µ2: We will take the derivative of (◦) with respect to µ1 first (the other case is symmetrical):

∂(◦)
∂µ1

=
∂

∂µ1

[
n∑
i=1

log(w1p(yi|θ1))pZi
(1|yi, θ(t)) + log(w3p(yi|θ1))pZi

(1|yi, θ(t))
]

by definition of (∗)

=
n+m∑
i=1

pZi
(1|yi, θ(t))

[
∂

∂µ1
log(w1p(yi|θ1))

]
+
n+m∑
i=1

pZi
(3|yi, θ(t))

[
∂

∂µ1
log(w3p(yi|θ1))

]
taking constants out

=
n+m∑
i=1

pZi
(1|yi, θ(t))

[
∂

∂µ1
log(p(yi|θ1))

]
+
n+m∑
i=1

pZi
(3|yi, θ(t))

[
∂

∂µ1
log(p(yi|θ1))

]
(◦◦) log(wk) is a constant

We already computed:
∂

∂µk
log(p(yi|θk)) =

∂

∂µk

{
log

[
1

σk
√
2π

]
− (yi − µk)2

2σ2
k

}
=
yi − µk
σ2
k

Thus, replacing into (◦◦) and setting to zero:

∂(∗)
∂µk

=
n+m∑
i=1

pZi(1|yi, θ(t))
[
yi − µ1

σ2
1

]
+
n+m∑
i=1

pZi(3|yi, θ(t))
[
yi − µ1

σ2
1

]
replacing

∂

∂µk
log(p(yi|θk)) into (◦◦)

=
1

σ2
1

[
n+m∑
i=1

pZi(1|yi, θ(t)) (yi − µ1) + pZi(3|yi, θ(t)) (yi − µ1)

]

=
1

σ2
1

[
n+m∑
i=1

(yi − µ1)
(
pZi

(1|yi, θ(t)) + pZi
(3|yi, θ(t))

)]
= 0 =⇒ (since σ1 > 0)

µ1 =

n+m∑
i=1

(
pZi

(1|yi, θ(t)) + pZi
(3|yi, θ(t))

)
yi

n+m∑
i=1

pZi(1|yi, θ(t)) + pZi(3|yi, θ(t))

A very similar argument, which I will not write entirely to save space, shows that:

µ2 =

n+m∑
i=1

(
pZi

(2|yi, θ(t)) + pZi
(4|yi, θ(t))

)
yi

n+m∑
i=1

pZi
(2|yi, θ(t)) + pZi

(4|yi, θ(t))
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For σ1 and σ2: We will take the derivative of (◦) with respect to σ1. Note that most of the work
has already been done, so I am not going to write every detail here.

∂(◦)
∂σ1

=
n+m∑
i=1

pZi
(1|yi, θ(t))

[
∂

∂σ1
log(p(yi|θ1))

]
+ pZi

(3|yi, θ(t))
[
∂

∂σ1
log(p(yi|θ1))

]
this is equation (◦◦).

Where,
∂

∂σk
log(p(yi|θk)) =

∂

∂σk

{
log

[
1

σk
√
2π

]
− (yi − µk)2

2σ2
k

}
= − 1

σk
+

(yi − µk)2

σ3
k

Replacing this into the equation above and setting to zero:

∂(∗)
∂σ1

=
n+m∑
i=1

pZi
(1|yi, θ(t))

[
∂

∂σ1
log(p(yi|θ1))

]
+ pZi

(3|yi, θ(t))
[
∂

∂σ1
log(p(yi|θ1))

]

=
n+m∑
i=1

(
pZi(1|yi, θ(t)) + pZi(3|yi, θ(t))

) [
− 1

σ1
+

(yi − µ1)
2

σ3
1

]

= − 1

σ1

n+m∑
i=1

(
pZi

(1|yi, θ(t)) + pZi
(3|yi, θ(t))

) [
1− (yi − µ1)

2

σ2
1

]
= 0 =⇒ multiplying by σ1

σ2
1 =

n+m∑
i=1

[
pZi

(1|yi, θ(t)) + pZi
(3|yi, θ(t))

]
(yi − µ1)

2

n+m∑
i=1

pZi
(1|yi, θ(t)) + pZi

(3|yi, θ(t))

Essentially the same argument shows that:

σ2
2 =

n+m∑
i=1

[
pZi

(2|yi, θ(t)) + pZi
(4|yi, θ(t))

]
(yi − µ2)

2

n+m∑
i=1

pZi(2|yi, θ(t)) + pZi(4|yi, θ(t))

Finally, we have all the components we need for the EM algorithm:

EM Algorithm: Following the class notes and the above derivation, the following is the EM Algorithm:

1. Initialize µ(0)
k , σ

(0)
k for k = 1, 2 and β(0), α(0)

2. Set t = 0.

3. Repeat until convergence

(a) pZi
(k|yi, θ(t)) =

wkp(yi|θk)
4∑
i=1

wip(yi|θi)

(b) β(t+1) =

(
n+m

n

) n+m∑
i=1

pZi
(1|yi, θ(t))

4∑
j=1

n+m∑
i=1

pZi(j|yi, θ(t))
and α(t+1) =

(
n+m

m

) n+m∑
i=1

pZi
(3|yi, θ(t))

4∑
j=1

n+m∑
i=1

pZi(j|yi, θ(t))

(c) µ(t+1)
k =

n+m∑
i=1

(
pZi

(k|yi, θ(t)) + pZi
(k + 2|yi, θ(t))

)
yi

n+m∑
i=1

pZi
(k|yi, θ(t)) + pZi

(k + 2|yi, θ(t))
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(d) (σ2
k)

(t+1) =

n+m∑
i=1

[
pZi

(k|yi, θ(t)) + pZi
(k + 2|yi, θ(t))

]
(yi − µ1)

2

n+m∑
i=1

pZi(k|yi, θ(t)) + pZi(k + 2|yi, θ(t))

(e) t = t+ 1

4. Report µ(t)
k , (σ2

k)
(t) and β(t), α(t) for k = 1, 2.

Problem 6: Consider the problem of linear regression in which the objective function is to minimize the sum of squared
distances to the fitting line, as shown in the figure below. In the figure, d(f(x), (x0, y0)) represents the
Euclidean distance from point (x0, y0) to the line f(x). Formulate the optimization problem and solve it as
far as you can make it. Assume you are given a data set D = {(xi, yi)}ni=1, where xi ∈ R, and yi ∈ R.

Solution: To solve this problem we first define the function d(f(x), (x0, y0)). As stated in [5.], given a point (x0, y0)
and a line ax+ by + c = 0 with coefficients a, b, c ∈ R, the perpendicular distance from the point to the line
is given by:

d(f(x), (x0, y0)) =

√
(ax0 + by0 + c)2

a2 + b2

We can now define the problem of linear regression: suppose we are given data points D = {(xi, yi)}ni=1 where
xi, yi ∈ R. Let us hypothesize the fitting line to be f(xi) = w0 +w1xi or equivalently w1xi− f(xi) +w0 = 0.
The distance from the point (xi, yi) to this line is:

ei = d(f(xi), (xi, yi)) =

√
(w1xi − yi + w0)

2

w2
1 + (−1)2

=⇒ e2i =
(w1xi − yi + w0)

2

w2
1 + (−1)2

=
(w1xi − yi + w0)

2

w2
1 + 1

Now we define the function E(w0, w1) to be the sum of squared distances to the fitting line:

E(w0, w1) =

n∑
i=1

e2i =

n∑
i=1

(w1xi − yi + w0)
2

w2
1 + 1

=
1

w2
1 + 1

n∑
i=1

(w1xi − yi + w0)
2

Minimization:

∂E

∂w0
=

∂

∂w0

[
1

w2
1 + 1

n∑
i=1

(w1xi − yi + w0)
2

]
=

2

w2
1 + 1

n∑
i=1

(w1xi − yi + w0)

Setting
∂E

∂w0
= 0 and noting that w2

1 + 1 > 0, we get

n∑
i=1

(w1xi − yi + w0) = 0 =⇒
n∑
i=1

(w1xi − yi) + nw0 = 0 =⇒ w0 =

n∑
i=1

yi − w1xi

n
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∂E

∂w1
=

∂

∂w1

[
1

w2
1 + 1

n∑
i=1

(w1xi − yi + w0)
2

]
=

n∑
i=1

2(w1xi − yi + w0)(xi + w1(yi − w0))

(w2
1 + 1)2

Setting
∂E

∂w1
= 0 and noting that (w2

1 + 1)2 > 0, we get

n∑
i=1

(w1xi − yi + w0)(xi + w1(yi − w0)) = 0

Here we can replace w0 from the first partial derivative into the above equation and solve for w1. Next,
replace the value found for w1 into the equation for w0 to obtain the optimal values for w0 and w1 in terms
of the data only.

Even tough it is hard to get a close form solution for this problem, we could instead do an algorithm to
approximate the solution. For example, we could do gradient descent: The first thing we need for this is the
gradient ∇E, which we already computed:

∇E =

(
∂E

∂w0
,
∂E

∂w1

)
=

(
1

w2
1 + 1

n∑
i=1

(w1xi − yi + w0)
2,

n∑
i=1

2(w1xi − yi + w0)(xi + w1(yi − w0))

(w2
1 + 1)2

)

The algorithm would be:

Gradient Descent:

1. Initialize w(0)
0 and w(0)

1 (I suggest using the OLS solution)

2. Set t = 0.

3. Repeat until convergence

(a) w(t+1)
0 = w

(t)
0 − η

1

(w
(t)
1 )2 + 1

n∑
i=1

(w
(t)
1 xi − yi + w

(t)
0 )2

(b) w(t+1)
1 = w

(t)
1 − η

n∑
i=1

2(w
(t)
1 xi − yi + w

(t)
0 )(xi + w

(t)
1 (yi − w(t)

0 ))

(w
(t)
1 )2 + 1)2

(c) t = t+ 1

4. Report w(t)
0 , w

(t)
1

where η is a parameter, usually a positive small number.
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