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Section 3.2
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Consider the pair of functions: e~2!,te~2*. Then,

W) = —Qt(te—Qt)/ _ te—Qt(e—Qt)/
_ —Qt(e—Qt _ 2t€_2t) + 2te—4t

—4t 2t674t + 2t674t
—4t

[S G I I

Hence, the Wronskian of the given pair of functions is W (t) = e~*!.

Consider the pair of functions: cos?(#),1 + cos(260). Note that, 1 + cos(20) = 2cos?() Then,
W) = (cos?(6))(2cos*(0)) — (cos*(0) (2cos*(8))
= (cos?(0))2(—2sin(0)cos(6)) — (—2sin(0)cos())(2cos*(0))
= —4sin(0)cos®(0) + 4sin(6)cos>(0)
= 0

Hence, the Wronskian of the given pair of functions is W(#) = 0.
Yy + (cos(t))y’ + 3(In(|t]))y =0, y(2) =3, y'(2) =1.  This equation is already in standard form.

Applying Theorem 3.2.1 (E.U.T), we analyze continuity of the functions p(¢t) = cos(t) (continuos every-
where), ¢(t) = 3(In(]t])) (continuos everywhere except at t = 0) and g(t) = 0 (continuos everywhere).

Hence, these functions are continuous when either —co < ¢t < 0 or 0 < t < oo. But, tp = 2 € (0,00)
and hence, there exists a unique solution in this interval.

(x = 3)y" + xy' + (In(Jz|))y = 0, y(1) = 0, y'(1) = 1. This equation is not in standard form.
1 l
Multiplying by ey we can convert this equation to standard form: y” + LS + &ﬂ; =0
x — T — T —

Applying Theorem 3.2.1 (E.U.T), we analyze continuity of the functions p(t) = % (continuos every-
-
In(lz)

where except at © = 3), q(t) (continuos everywhere except at ¢ = 0 and ¢ = 3) and g(¢t) = 0

(continuos everywhere).

Hence, these functions are continuous when either —co < t < 0 or 0 < t < 3 or 3 < t < oco. But,
to =1 € (0,3) and hence, there exists a unique solution in this interval.

Consider the following linear, homogeneous, 2nd O.D.E: 29" —2y=0, t>0.
Claim: y; (t) = t? and yo(t) = t~! are solutions to the O.D.E. Proof: They each have to satisfy the equation.
Note that y{ = 2 d”—2

ote that y7' = 2 and y3 = -3

For y; we have: 2y} — 2y; = t2(2) — 2t = 0. So, y; is a solution.

For ys we have: t2yl — 2y, = Pl 0. So, yo is a solution.

Claim: y = ¢1t? + cot ™! is also a solution.

2,1 2 2¢y 2 -1 5, 202 o 2¢o . .
Proof: t*y" — 2y = t%(2¢; + t—3) —2(e1t? + cot™t) = 2¢1t% + - - 2¢1t* — - = 0, so y is also a solution for
any ci, Ca.

Let W(t) = 3e* and f(t) = e?*. We want to find g(t). Applying the definition of the Wronskian:

W) = f-9-1"g

— e2t.g/_262t.g
Bett = 2.g _2e%. g
et = (g —29) =
3 = ¢ -2



This final equation is a linear, 1st O.D.E. We solve this by integrating factor u(t) = ¢/ =2 = e=2t.;

d
%[e*%g] =3e?'. e7% — integrating both sides e 2'g = /3dt =3t+C

So, the function g is given by g(t) = 3te? + Ce?!

y'+y —2y=0, =0
The characteristic equation is 72 +r —2 =0 <= (r — 1)(r + 2) = 0. The solution is given by:
y(t) = Ciet + Che™?
By Theorem 3.2.5, let y; be the solution that satisfies y;(to) =1, y}(to) = 0. Then:

1
nto) =y1(0)=1=Cr1+C = 1=3C=Cr=3

2
yll(to):yi(O):O:Cl—QCQ :>Cl :202:>Cl = g

2 1
The particular solution y; is given by y;(t) = get + 56_%

Likewise, by Theorem 3.2.5, let y2 be the solution that satisfies y2(to) =1, y5(to) = 0. Then:

1
yg(to):y2(0)20201+02 :>01:—02:>01:§

yé(to) = y/Q(O) =1=C1-20;, = 1=-3Cy, = Cy= —%

1 1
The particular solution ys is given by ys(t) = get - ge_

2t

By Theorem 3.2.5, y; and y, form a fundamental set of solutions.

y' '+ 4y +3y=0, tg=1
The characteristic equation is 7% +4r +3 =0 <= (r + 1)(r + 3) = 0. The solution is given by:
y(t) = Cre t + Che™ 3
By Theorem 3.2.5, let y; be the solution that satisfies y;(to) =1, y}(to) = 0. Then:

3 3e
yl(to) = yl(l) =1= 016_1 + 026_3 — —5 = —Cle_l — Cl = 7

3

yll(to) = yﬂ(l) =0= —016_1 — 3026_3 = 1= —2026_3 — Cy = —%

3e el 3el=t 373t
The particular solution y; is given by y;(t) = ?e_t - ?e_gt = yi(t) = 5 9

Likewise, by Theorem 3.2.5, let y2 be the solution that satisfies ya(to) =1, y5(to) = 0. Then:

gy

1
yg(to) = yz(].) =0= 01671 + 02673 — 01671 = 5 — Cl = 5

3
yh(to) =yh(1) =1 = —Cre! —3Che™3 = 1= 203 = Cy = —%

el—t e3—3t

The particular solution y is given by ys(t) = < 3

By Theorem 3.2.5, y; and y, form a fundamental set of solutions.



Section 3.3

9. Consider the following homogeneous, linear, 2nd O.D.E with constant coefficients:
y"+2y’—8y:0

The characteristic equation is r2 +2r —8 =0 <= (r +4)(r — 2) = 0. Hence, the general solution is given
by:
y(t) = 016747: + 626%

16. Consider the following homogeneous, linear, 2nd O.D.E with constant coefficients:

y" + 4y +6.25y =0

The characteristic equation is r2+4r—6.25 = 0. Solving via quadratic formula: r =

We have two complex roots: 11 = —2 + %z and ro = =2 + %z . The solutions are:
, 3 3
y (t) = e(72+30)t eth[cos(Et) + zsm(it)}

yo(t) = e(727 30 = e_Qt[cos(—gt) + zsm(—gt)] = trig. identities = e_zt[cos(gt) - zsm(gt)}

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under
addition:

y1(t) +y2(t) = Qe_ztcos(gt)

y1(t) —y2(t) = 2i672t5in(;t)

We can drop the constants 2 and 2i to obtain the general solution:
—2¢ 3 Y
y(t) = Che cos(it) + Cae sm(it)

19. Consider the LV.P: ¢ =2y’ +5y =0, y(w/2) =0, v'(7/2)=2. This is a homogeneous, linear, 2nd O.D.E
with constant coefficients. To solve it we find the characteristic equation:

24420 244

21 5 =1+2¢

P —2r45=0 < r=

We have two complex roots: r; = 1+ 2¢ and 7o = 1 — 2i . The solutions are:
y1(t) = (20t = etleos(2t) 4 isin(2t)]

Yo (t) = e120t = etcos(—2t) + isin(—2t)] = e'[cos(2t) — isin(2t)]

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under
addition:
y1(t) + y2(t) = 2¢etcos(2t)

y1(t) — y2(t) = 2ie’sin(2t)
We can drop the constants 2 and 2:¢ to obtain the general solution:
y(t) = Cre’cos(2t) + Coe'sin(2t)
Finally, we solve for the initial conditions:

y(r/2) = 0 = Cre™?cos(nt) + Coe™ ?sin(r) = —e™/2Cy = C; =0

-1
e7r/2

y'(1/2) =2 = (we already know that C; =0 ... ) = Cy[e™/?sin(n) + e“/Zcos(ﬂ)g = —20%e™/2Cy =

So, the particular solution for the I.V.P:

y(t) = Tetsin(%) — y(t) = —e! 7 2sin(2t)
67('



Graph of the solution:
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plot —e™(xX=(pi/21=sin(2x) | Computed by Wolfram |[Alpha

Also, tlgglo y(t) = —oc0

. Consider the ILV.P: ¢y’ + ¢’ + 1.25y =0, y(0) =3, ¢'(0) =1. This is a homogeneous, linear, 2nd O.D.E
with constant coefficients. To solve it we find the characteristic equation:

“1EVI-5 12 1
2.1 2 27!

P 4r+125=0 < r=

1 1
We have two complex roots: r; = —3 + i and ro = —5 — 4 . The solutions are:

[SES

yi(t) = e~ = e~ 3[cos(t) + isin(t)]

t

ya(t) = e(7im3)t = o3 [cos(—t) + isin(—t)] = e~ [cos(t) — isin(t)]

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under
addition:

y1(t) + y2(t) = 2e*%cos(t)

y1(t) — ya(t) = 2ie” Fsin(t)

We can drop the constants 2 and 2¢ to obtain the general solution:
y(t) = Cre~ 2 cos(t) + Cae™ 2 sin(t)
Finally, we solve for the initial conditions:

y(0) = 3 = C1€%0s(0) + Cae’sin(0) = C; =3

1 1 1 )
y'(0)=1= Cl[—ieocos(O) — eYsin(0)] + Cg[—ieosin(O) + €%os(0)] = —501 +Cy = Cy = 5
So, the particular solution for the I.V.P:

t 5 t
y(t) = 3e~2cos(t) + 56_552'71(75)



Graph of the solution:
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Also, tli)rgo y(t)=0



