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Section 3.2

3. Consider the pair of functions: e−2t, te−2t. Then,

W (t) = e−2t(te−2t)′ − te−2t(e−2t)′
= e−2t(e−2t − 2te−2t) + 2te−4t

= e−4t − 2te−4t + 2te−4t

= e−4t

Hence, the Wronskian of the given pair of functions is W (t) = e−4t.

6. Consider the pair of functions: cos2(θ), 1 + cos(2θ). Note that, 1 + cos(2θ) = 2cos2(θ) Then,

W (θ) = (cos2(θ))(2cos2(θ))′ − (cos2(θ)′(2cos2(θ))
= (cos2(θ))2(−2sin(θ)cos(θ))− (−2sin(θ)cos(θ))(2cos2(θ))
= −4sin(θ)cos3(θ) + 4sin(θ)cos3(θ)
= 0

Hence, the Wronskian of the given pair of functions is W (θ) = 0.

10. y′′ + (cos(t))y′ + 3(ln(|t|))y = 0, y(2) = 3, y′(2) = 1. This equation is already in standard form.

Applying Theorem 3.2.1 (E.U.T), we analyze continuity of the functions p(t) = cos(t) (continuos every-
where), q(t) = 3(ln(|t|)) (continuos everywhere except at t = 0) and g(t) = 0 (continuos everywhere).

Hence, these functions are continuous when either −∞ < t < 0 or 0 < t < ∞. But, t0 = 2 ∈ (0,∞)
and hence, there exists a unique solution in this interval.

11. (x − 3)y′′ + xy′ + (ln(|x|))y = 0, y(1) = 0, y′(1) = 1. This equation is not in standard form.

Multiplying by
1

x− 3
we can convert this equation to standard form: y′′ +

x

x− 3
+
ln(|x|)
x− 3

= 0

Applying Theorem 3.2.1 (E.U.T), we analyze continuity of the functions p(t) =
x

x− 3
(continuos every-

where except at x = 3), q(t) =
ln(|x|)
x− 3

(continuos everywhere except at t = 0 and t = 3) and g(t) = 0

(continuos everywhere).

Hence, these functions are continuous when either −∞ < t < 0 or 0 < t < 3 or 3 < t < ∞. But,
t0 = 1 ∈ (0, 3) and hence, there exists a unique solution in this interval.

13. Consider the following linear, homogeneous, 2nd O.D.E: t2y′′ − 2y = 0, t > 0.

Claim: y1(t) = t2 and y2(t) = t−1 are solutions to the O.D.E. Proof: They each have to satisfy the equation.

Note that y′′1 = 2 and y′′2 =
2

t3

For y1 we have: t2y′′1 − 2y1 = t2(2)− 2t2 = 0. So, y1 is a solution.

For y2 we have: t2y′′2 − 2y2 =
2

t
− 2

t
= 0. So, y2 is a solution.

Claim: y = c1t
2 + c2t

−1 is also a solution.

Proof: t2y′′ − 2y = t2(2c1 +
2c2
t3

)− 2(c1t
2 + c2t

−1) = 2c1t
2 +

2c2
t
− 2c1t

2 − 2c2
t

= 0, so y is also a solution for
any c1, c2.

17. Let W (t) = 3e4t and f(t) = e2t. We want to find g(t). Applying the definition of the Wronskian:

W (t) = f · g′ − f ′ · g
= e2t · g′ − 2e2t · g

3e4t = e2t · g′ − 2e2t · g
3e4t = e2t(g′ − 2g) ⇐⇒
3e2t = g′ − 2g
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This final equation is a linear, 1st O.D.E. We solve this by integrating factor µ(t) = e
∫
−2 = e−2t.:

d

dt
[e−2tg] = 3e2t · e−2t =⇒ integrating both sides e−2tg =

∫
3dt = 3t+ C

So, the function g is given by g(t) = 3te2t + Ce2t

22.
y′′ + y′ − 2y = 0, t0 = 0

The characteristic equation is r2 + r − 2 = 0 ⇐⇒ (r − 1)(r + 2) = 0. The solution is given by:

y(t) = C1e
t + C2e

−2t

By Theorem 3.2.5, let y1 be the solution that satisfies y1(t0) = 1, y′1(t0) = 0. Then:
y1(t0) = y1(0) = 1 = C1 + C2 =⇒ 1 = 3C2 =⇒ C2 =

1

3

y′1(t0) = y′1(0) = 0 = C1 − 2C2 =⇒ C1 = 2C2 =⇒ C1 =
2

3

The particular solution y1 is given by y1(t) =
2

3
et +

1

3
e−2t

Likewise, by Theorem 3.2.5, let y2 be the solution that satisfies y2(t0) = 1, y′2(t0) = 0. Then:
y2(t0) = y2(0) = 0 = C1 + C2 =⇒ C1 = −C2 =⇒ C1 =

1

3

y′2(t0) = y′2(0) = 1 = C1 − 2C2 =⇒ 1 = −3C2 =⇒ C2 = −1

3

The particular solution y2 is given by y2(t) =
1

3
et − 1

3
e−2t

By Theorem 3.2.5, y1 and y2 form a fundamental set of solutions.

23.
y′′ + 4y′ + 3y = 0, t0 = 1

The characteristic equation is r2 + 4r + 3 = 0 ⇐⇒ (r + 1)(r + 3) = 0. The solution is given by:

y(t) = C1e
−t + C2e

−3t

By Theorem 3.2.5, let y1 be the solution that satisfies y1(t0) = 1, y′1(t0) = 0. Then:
y1(t0) = y1(1) = 1 = C1e

−1 + C2e
−3 =⇒ −3

2
= −C1e

−1 =⇒ C1 =
3e

2

y′1(t0) = y′1(1) = 0 = −C1e
−1 − 3C2e

−3 =⇒ 1 = −2C2e
−3 =⇒ C2 = −e

3

2

The particular solution y1 is given by y1(t) =
3e

2
e−t − e3

2
e−3t ⇐⇒ y1(t) =

3e1−t

2
− e3−3t

2

Likewise, by Theorem 3.2.5, let y2 be the solution that satisfies y2(t0) = 1, y′2(t0) = 0. Then:
y2(t0) = y2(1) = 0 = C1e

−1 + C2e
−3 =⇒ C1e

−1 =
1

2
=⇒ C1 =

e

2

y′2(t0) = y′2(1) = 1 = −C1e
−1 − 3C2e

−3 =⇒ 1 = −2C2e
−3 =⇒ C2 = −e

3

2

The particular solution y2 is given by y2(t) =
e1−t

2
− e3−3t

2

By Theorem 3.2.5, y1 and y2 form a fundamental set of solutions.
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Section 3.3

9. Consider the following homogeneous, linear, 2nd O.D.E with constant coefficients:

y′′ + 2y′ − 8y = 0

The characteristic equation is r2 + 2r − 8 = 0 ⇐⇒ (r + 4)(r − 2) = 0. Hence, the general solution is given
by:

y(t) = C1e
−4t + C2e

2t

16. Consider the following homogeneous, linear, 2nd O.D.E with constant coefficients:

y′′ + 4y′ + 6.25y = 0

The characteristic equation is r2+4r−6.25 = 0. Solving via quadratic formula: r =
−4±

√
16− 25

2 · 1
= −2±3

2
i.

We have two complex roots: r1 = −2 + 3
2 i and r2 = −2 + 3

2 i . The solutions are:

y1(t) = e(−2+
3
2 i)t = e−2t[cos(

3

2
t) + isin(

3

2
t)]

y2(t) = e(−2−
3
2 i)t = e−2t[cos(−3

2
t) + isin(−3

2
t)] = trig. identities = e−2t[cos(

3

2
t)− isin(

3

2
t)]

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under
addition:

y1(t) + y2(t) = 2e−2tcos(
3

2
t)

y1(t)− y2(t) = 2ie−2tsin(
3

2
t)

We can drop the constants 2 and 2i to obtain the general solution:

y(t) = C1e
−2tcos(

3

2
t) + C2e

−2tsin(
3

2
t)

19. Consider the I.V.P: y′′−2y′+5y = 0, y(π/2) = 0, y′(π/2) = 2. This is a homogeneous, linear, 2nd O.D.E
with constant coefficients. To solve it we find the characteristic equation:

r2 − 2r + 5 = 0 ⇐⇒ r =
2±
√

4− 20

2 · 1
=

2± 4i

2
= 1± 2i

We have two complex roots: r1 = 1 + 2i and r2 = 1− 2i . The solutions are:

y1(t) = e(1+2i)t = et[cos(2t) + isin(2t)]

y2(t) = e(1−2i)t = et[cos(−2t) + isin(−2t)] = et[cos(2t)− isin(2t)]

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under
addition:

y1(t) + y2(t) = 2etcos(2t)

y1(t)− y2(t) = 2ietsin(2t)

We can drop the constants 2 and 2i to obtain the general solution:

y(t) = C1e
tcos(2t) + C2e

tsin(2t)

Finally, we solve for the initial conditions:
y(π/2) = 0 = C1e

π/2cos(π) + C2e
π/2sin(π) = −eπ/2C1 =⇒ C1 = 0

y′(π/2) = 2 = (we already know that C1 = 0 ... ) = C2[eπ/2sin(π) + eπ/2cos(π)
π

2
= −2C2e

π/2C2 =⇒ −1

eπ/2

So, the particular solution for the I.V.P:

y(t) =
−1

eπ/2
etsin(2t) ⇐⇒ y(t) = −et−π/2sin(2t)
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Graph of the solution:

Also, lim
t→∞

y(t) = −∞

21. Consider the I.V.P: y′′ + y′ + 1.25y = 0, y(0) = 3, y′(0) = 1. This is a homogeneous, linear, 2nd O.D.E
with constant coefficients. To solve it we find the characteristic equation:

r2 + r + 1.25 = 0 ⇐⇒ r =
−1±

√
1− 5

2 · 1
=
−1± 2i

2
= −1

2
± i

We have two complex roots: r1 = −1

2
+ i and r2 = −1

2
− i . The solutions are:

y1(t) = e(i−
1
2 )t = e−

t
2 [cos(t) + isin(t)]

y2(t) = e(−i−
1
2 )t = e−

t
2 [cos(−t) + isin(−t)] = e−

t
2 [cos(t)− isin(t)]

To express the solution in terms of real-valued functions, we use the fact that the solutions are closed under
addition:

y1(t) + y2(t) = 2e−
t
2 cos(t)

y1(t)− y2(t) = 2ie−
t
2 sin(t)

We can drop the constants 2 and 2i to obtain the general solution:

y(t) = C1e
− t

2 cos(t) + C2e
− t

2 sin(t)

Finally, we solve for the initial conditions:
y(0) = 3 = C1e

0cos(0) + C2e
0sin(0) =⇒ C1 = 3

y′(0) = 1 = C1[−1

2
e0cos(0)− e0sin(0)] + C2[−1

2
e0sin(0) + e0cos(0)] = −1

2
C1 + C2 =⇒ C2 =

5

2

So, the particular solution for the I.V.P:

y(t) = 3e−
t
2 cos(t) +

5

2
e−

t
2 sin(t)
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Graph of the solution:

Also, lim
t→∞

y(t) = 0
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