
TEST FOR POSITIVE AND NEGATIVE DEFINITENESS

We want a computationally simple test for a symmetric matrix to induce a positive definite quadratic
form. We first treat the case of 2× 2 matrices where the result is simple. Then, we present the conditions
for n × n symmetric matrices to be positive definite. Finally, we state the corresponding condition for the
symmetric matrix to be negative definite or neither. Before starting all these cases, we recall the relationship
between the eigenvalues and the determinant and trace of a matrix.

For a matrixA, the determinant and trace are the product and sum of the eigenvalues:

det(A) = λ1 · · · λn, and

tr(A) = λ1 + · · · + λn,

whereλ j are then eigenvalues ofA. (Here we list an eigenvalue twice if it has multiplicity two, etc.)

1. TWO BY TWO MATRICES

Let A =

(
a b
b c

)
be a general 2× 2 symmetric matrix. We will see in general that the quadratic form

for A is positive definite if and only if all the eigenvalues are positive. Since, det(A) = λ1λ2, it is necessary
that the determinant ofA be positive. On the other hand if the determinant is positive, then either (i) both
eigenvalues are positive, or (ii) both eigenvalues are negative. Since tr(A) = λ1 + λ2, if det(A) > 0 and
tr(A) > 0 then both eigenvalues must be positive. We want to give this in a slightly different form that is
more like what we get in then × n case. If det(A) = ac − b2 > 0, thenac > b2

≥ 0, anda andc must
have the same sign. Thus det(A) > 0 andtr (A) > 0 is equivalent to the condition that det(A) > 0 and
a > 0. Therefore, a necessary and sufficient condition for the quadratic form of a symmetric 2× 2 matrix
to be positive definite is for det(A) > 0 anda > 0.

We want to see the connection between the condition onA to be positive definite and completion of the
squares.

Q(x, y) = (x, y)A
(

x
y

)
= a x2

+ 2b xy+ c y2

= a
(

x +
b

a
y
)2

+

(ac− b2

a

)
y2.

This expresses the quadratic form as a sum of two squares by means of “completion of the squares”. If
a > 0 and det(A) > 0, then both these coefficients are positive and the form is positive definite. It can also

be checked thata and
ac− b2

a
are the pivots whenA is row reduced. We can summarize these two results

in the following theorem.

Theorem 1. Let A be an2 × 2 symmetric matrix andQ(x) = xTAx the related quadratic form. The
following conditions are equivalent:

(i) Q(x) is positive definite.
(ii) Both eigenvalues ofA are positive.

(iii) Both a x2 and(x, y)A(x, y)T are positive definite.
(iv) Bothdet(A) > 0 and a> 0.
(v) Both the pivots obtained without row exchanges or scalar multiplications of rows are positive.

(vi) By completion of the squares,Q(x) can be represented as a sum of two squares, with both positive
coefficients.
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2. POSITIVE DEFINITE QUADRATIC FORMS

In the generaln × n symmetric case, we will see two conditions similar to these for the 2× 2 case.
A condition for Q to be positive definite can be given in terms of several determinants of the “principal”
submatrices. Second,Q is positive definite if the pivots are all positive, and this can be understood in terms
of completion of the squares.

Let A be ann×n symmetric matrix. We need to consider submatrices ofA. LetAk be thek×k submatrix
formed by deleting the lastn − k rows and lastn − k columns ofA,

Ak =
(
ai, j

)
1≤i ≤k,1≤ j ≤k

.

The following theorem gives conditions of the quadratic form being positive definite in terms of determinants
of Ak.

Theorem 2. Let A be an n× n symmetric matrix andQ(x) = xTAx the related quadratic form. The
following conditions are equivalent:

(i) Q(x) is positive definite.
(ii) All the eigenvalues ofA are positive.

(iii) For each1 ≤ k ≤ n, the quadratic form associated toAk is positive definite.
(iv) The determinants,det(Ak) > 0 for 1 ≤ k ≤ n.
(v) All the pivots obtained without row exchanges or scalar multiplications of rows are positive.

(vi) By completion of the squares,Q(x) can be represented as a sum of squares, with all positive coeffi-
cients,

Q(x1, . . . , xn) = (x1, . . . , xn)UTDU(x1, . . . , xn)
T

= p1 (x1 + u1,2x2 + · · · + u1,nxn)
2

+ p2 (x2 + u2,3x3 + · · · + u2,nxn)
2

+ · · · + pnx2
n.

Proof. We assumeA is symmetric so we can find an orthonormal basis of eigenvectorsv1, . . .vn with
eigenvaluesλ1, . . .λn. Let P be the orthogonal matrix formed by putting thev j as the columns. Then
PTAP = D is the diagonal matrix with entriesλ1, . . .λn. Setting

x = y1v1
+ · · · + ynvn

= Py,

the quadratic form turns into a sum of squares:

Q(x) = xTAx

= yTPTAPy

= yTDy

=

n∑
j =1

λ j y2
j .

From this representation, it is clear thatQ is positive definite if and only if all the eigenvalues are positive,
i.e., conditions (i) and (ii) are equivalent.

AssumeQ is positive definite. Then for any 1≤ k ≤ n,

0 < Q(x1, . . . , xk, 0, . . . , 0)

= (x1, . . . , xk, 0, . . . , 0)A(x1, . . . , xk, 0, . . . , 0)T

= (x1, . . . , xk)Ak(x1, . . . , xk)
T

for all (x1, . . . , xk) 6= 0. This shows that (i) implies (iii).
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Assume (iii). Then all all the eigenvalues ofAk must be positive since (i) and (ii) are equivalent forAk.
Notice that the eigenvalues ofAk are not necessarily eigenvalues ofA. Therefore the determinant ofAk is
positive since it is the product of its eigenvalues. This is true for allk, so this shows that (iii) implies (iv).

Assume (iv). WhenA is row reduced, it also row reduces all theAk since we do not perform any row
exchanges. Therefore the pivots of theAk are pivots ofA. Also, the determinant ofAk is the product of the
first k pivots, det(Ak) = p1 . . . pk. Therefore

pk = (p1 . . . pk)/(p1 . . . pk−1) = det(Ak)/ det(Ak−1 > 0,

for all k. This proves (v).
Now assume (v). Row reduction can be realized by matrix multiplication on the left by a lower triangular

matrix. Therefore, we can writeA = LDU whereD is the diagonal matrix made up of the pivots,L is
lower triangular with ones on the diagonal, andU is upper diagonal with ones on the diagonal. SinceA is
symmetric,LDU = A = AT

= UTDL T . It can then be shown thatUT
= L . Therefore,

Q(x1, . . . , xn) = (x1, . . . , xn)UTDU(x1, . . . , xn)
T

= p1 (x1 + u1,2x2 + · · · + u1,nxn)
2

+ p2 (x2 + u2,3x3 + · · · + u2,nxn)
2

+ · · · + pnx2
n.

Thus, we can “complete the squares”, expressingQ as the sum of squares with the pivots as the coefficients.
If the pivots are all positive, then all the coefficientspi are positive. Thus (v) implies (vi). Note, thatz = Ux
is a non-orthonormal change of basis that makes the quadratic form diagonal.

If Q(x) can be written as the sum of squares of the above form with positive coefficients, then the quadratic
form must be positive. Thus, (vi) implies (i). �

Example 3. Let

A =

 2 -1 0
-1 2 -1
0 -1 2

 .

The eigenvalues are 2 and 2±
√

2 which are all positive, which shows that the quadratic form induced byA
is positive definite. (Notice that these eigenvalues are not especially easy to calculate.)

We can row reduce to representA as the product of lower triangular, diagonal, and upper triangular
matrices.

A =

 1 0 0
-1

2 1 0
0 -2

3 1

 2 0 0
0 3

2 0
0 0 4

3

 1 -1
2 0

0 1 -2
3

0 0 1

 .

Since the pivots on the diagonal are all positive, the quadratic form induced byA is positive definite, and

xTAx = 2(x1 −
1

2
x2)

2
+

3

2
(x2 −

2

3
x3)

2
+

4

3
x2

3.

The principal submatrices and their determinants are

A1 = (2), det(A1) = 2 > 0,

A2 =

(
2 -1
-1 2

)
, det(A2) = 3 > 0,

A3 = A det(A) = 2
(
3/2

) (
4/3

)
= 4 > 0.

Since these are all positive, the quadratic form induced byA is positive definite.
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3. NEGATIVE DEFINITE QUADRATIC FORMS

The conditions for the quadratic form to be negative definite are similar, all the eigenvalues must be
negative.

Theorem 4. Let A be an n× n symmetric matrix andQ(x) = xTAx the related quadratic form. The
following conditions are equivalent:

(i) Q(x) is negative definite.
(ii) All the eigenvalues ofA are negative.

(iii) The quadratic forms associated to all theAk are negative definite.
(iv) The determinants,(-1)k det(Ak) > 0 for 1 ≤ k ≤ n, i.e., det(A1) < 0, det(A2) > 0, . . . ,

(-1)n det(An) = (-1)n det(A) > 0.
(v) All the pivots obtained without row exchanges or scalar multiplications of rows are negative.

(vi) By completion of the squares,Q(x) can be represented as a sum of squares, with all negative coeffi-
cients,

Q(x1, . . . , xn) = (x1, . . . , xn)UTDU(x1, . . . , xn)
T

= p1 (x1 + u1,2x2 + · · · + u1,nxn)
2

+ p2 (x2 + u2,3x3 + · · · + u2,nxn)
2

+ · · · + pnx2
n.

For condition (4), the idea is that the product ofk negative numbers has the same sign as(-1)k.

4. PROBLEMS

1. Decide whether the following matrices are positive definite, negative definite, or neither:

(a)

 2 -1 -1
-1 2 -1
-1 -1 2

 (b)

 2 -1 -1
-1 2 1
-1 1 2



(c)

1 2 3
2 5 4
3 4 9

 (d)


1 2 0 0
2 6 -2 0
0 -2 5 -2
0 0 -2 3


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