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Chapter 5

FExercises:

1.3 Let X and Y be independent Poisson distributed random variables with parameters « and [, respectively. Determine the
conditional distribution of X, given that N = X +Y =n.

Solution: We wish to compute Pr{X = k|X +Y = n}, for an arbitrary value of k¥ € N. Note that by theorem 1.1
X +Y ~ Pois(a+ ). We proceed as follow:
PriX =k X+Y =n}

PriX =kX+Y =n} = PrX 1Y = n) def. of conditional prob.
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We recognize this distribution as a Binomial distribution with success probability p. Therefore,
) @
X|X +Y =n~ Binom (n, >
a+pj

Note that p is well defined because both a and 8 are greater than zero.
1.6 Messages arrive at a telegraph office as a Poisson process with mean rate of 3 messages per hour.

(a) What is the probability that no messages arrive during the morning hours 8:00 A.M to noon?

Solution: Let X = number of messages that arrive during the morning hours 8:00 A.M to noon. Then, by the
properties of Poisson processes we know that

3
X ~ POiS(hour - (12 — 8)hour) = Pois(12)

—12190
So now we can find Pr{X =0} = eT = ¢~ 12 =0.00000614421. This is very unlikely, which makes sense because

on average 3 messages arrive per hour and we are looking at a period of 4 hours with no messages arriving.



(b) What is the distribution of the time at which the first afternoon message arrives?

Solution: Let X be the poisson process and let 7" = the time at which the first afternoon message arrives. Af-
ternoon is the period between 12:00 p.m. and 12:00 a.m. We know the distribution of messages arriving in this
period and so we can compute the distribution of time, for ¢ = 13,14, 15,...24 as follow:

Pr{T >t} = Pr{the first afternoon message arrives after ¢ units of time}
= Pri(X(t) - X(12)) = 0}
= Pr{(X(t—-12)) =0} By properties of Pois. process

We know the distribution of X (t — 12) ~ Pois( - (t — 12)hours) = Pois(3(t — 12)). Hence,
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Pr{T >t} =Pr{(X(t—12)) =0} =
Finally, to get the cumulative distribution take the complement of the survival function:
Pr{T <t}=1-Pr{T>t}=1-¢ 30712
Since t > 12, a change of variables t — 12 = 2 = Pr{T <z} =1 — 3%, thus, T ~ Exp(3).
Problems:

1.2 Suppose that minor defects are distributed over the length of a cable as a Poisson process with rate «, and that, indepen-
dently major defects are distributed over the cable according to a Poisson process of rate 8. Let X (¢) be the number of
defects, either major or minor, in the cable up to length ¢. Argue that X (¢) must be a Poisson process of rate a + (.

Solution:

Let us check that (X(t);¢ > 0) is a Poisson process of intensity (or rate) oo+ 8. First, let us define (Y(¢);¢ > 0) to be
the Poisson process for minor defects and (Z(t);¢ > 0) to be the Poisson process for major defects. Then, by definition
of Poisson process we know that Y (¢) ~ Pois(at), and Z(t) ~ Pois(ft), both for every t > 0. Now, by definition, the
total number of defects is the sum of minor and major defects, i.e., X(¢) = Y (t) + Z(t). Since Y and Z are independent,
by theorem 1.1 we conclude X (t) = Y (t) + Z(t) ~ Pois((a + B)t), which holds for every ¢ > 0. Also, & > 0 and 5 > 0
(by definition of Poisson process), and so o + § > 0. This takes care of conditions (i) and (v) given in class for being a
Poisson process. For condition (74) note that Y'(¢) € N and Z(¢) € N and thus, X (¢) € N. Condition (iv) is easily checked:
X(0)=Y(0)+ Z(0) =0+ 0 =0. It remains to check condition (iii) of independent stationary increments. Let us check
this in two steps:

a) Independent increments: Choose arbitrary time points ¢;. Then,
X(trt1) = X(te) = [Y (tor1) + Z(er1)] = [V () + Z(te)] = [Y (terr) = Y (t0)] + [Z(trs1) — Z(te)]

Since Y and Z are Poisson processes, each summand is independent by the independent of increments of each process.
Also, since Y and Z are independent, their sum is independent, which shows that X has independent increments.
b) Stationary increments: let us show that for any ¢ > 0, the distribution of X (s +t) — X (s) does not depend on s.
Pr{X(s+t)—X(s) =k} = Pr{[Y(s+1t)+Z(s+1)]—[Y(s)+ Z(s)] =k} by definition of X
= Pr{[Y(s+1t)=Y(s)]+[Z(s+t) — Z(s)] = k} rearranging terms
E
= S Pr{[Y(s+t)=Y($)]+[Z(s+1t)—Z(s)] =kK|[Y(s+t) =Y (s)] =n}Pr{[Y(s+1t) = Y(s)] =n}
=0
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k
= > Pr{lZ(s+t)—Z(s)] =k —n}Pr{[Y(s+t) —Y(s)] = n} by independence of Y and Z
n=0

Since both Y and Z have stationary, independent increments, the distribution of each product above does not depend
on s and so the distribution of X won’t depend on s either, i.e, X has independent stationary increments.

1.3 The generating function of a probability mass function py = Pr{X =k}, for k =0,1,..., is defined by

gx(s) = E[s*] = Zpksk for |s] < 1
k=0



Show that the generating function for a Poisson random variable X with mean p is given by
gx(s) = e~ H(1=s)

Solution: Let X ~ Pois(u) and |s| < 1. Then,
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1.6 Let {X(t);t > 0} be a Poisson process of rate A. For s,¢ > 0, determine the conditional distribution of X (¢), given that
X(t+s)=n.

Solution: Let £k < m. Then:

Pr{X(t)=klX({t+s)=n} = Pr{)(;;){;(l;,j(;; i fj}: n} conditional prob.

Pr{X(t+s) =n|X(t) = k}Pr{X(t) = k}
Pr{X(t+s)=n}

conditional prob.
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= I s of Pois. 38
PriX(its)=n] ndependent increments of Pois. process

Now, we know the distribution of each of these:
X(t+s)— X(t) ~ Pois([(t + s) — t]\) = Pois(As); X(t+s) ~ Pois(A(t+s)); X(t) ~ Pois(At)
Hence, we can compute the distribution we are interested in:
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Hence, X (t)| X (t 4+ s) = n ~ Binom <n,



