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7.7.#1:

(a) Plugging in R the data:

data ← c(462,425,164,784,625,472,658,658,663,928,92,230,
96,626, 1277,225,150,320,496,157,458,933,861,174,431)

Then, Fn← ecdf(data). The following are the graphs for this distribution :

(a) plot(Fn) (e)boxplot(data) :

(f) qqnorm(data) : (g)plot(density(data)) :

(b) mean(data) = 494.6 and var(data) = 94873.67
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(c) median(data) = 462 and quantile(Fn):

0% 25% 50% 75% 100%
92 225 462 658 1277

So that iqr ← 658− 225 = 433

(d) iqr/sqrt(var(data)) = 1.405773

(h) It is plausible that the data was obtained from a normal distribution. The evidence supporting this is
clear from the graphs as well as the iqr to stdev ratio.

7.7.#4:

(a) Doing the same procedure as before but with the new data set:

For x

For y = log(x)

(b) mean(data) = 1.4876, var(data) = 2.934267, median(data) = 1.076 and quantile(Fn):
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0% 25% 50% 75% 100%
0.24600 0.50600 1.07600 1.61375 7.51700

So that iqr ← 1.61375− 0.50600 = 1.10775

(c) iqr/sqrt(var(data)) = 0.6466837. The data does not seem to be drawn from a normal distribution
because the iqr to stdev ratio does not conform to that of a normal distribution. Also, if we plot the
kernel density estimate of x, as well as a box plot, it does not look remotely close to a normal distribution.

(d) The graph for qqnorm(data) is on (a) above.
The normal probability plot does not conform to a normal distribution. Only looking at this piece of
information, this data does not seem to be drawn from a normal distribution.

(e) Looking at the distribution of the transformed data, it does seem plausible that ~y was drawn from a
normal distribution. The evidence in support of this conclusion is: (i) the kernel density plot on (a) (ii)
the normal plot also on (a) and (iii) the iqr to stdev ratio. The quantiles of ~y are:

0% 25% 50% 75% 100%
-1.4024237 -0.6848364 0.0730414 0.4669196 2.0171671

So that iqr ← 0.4669196 + 0.6848364 = 1.151756 and thus, iqr/sqrt(var(data)) = 1.308589

7.7.#5:

(a) I used the following command in R to analyze the data: z <- c(143 + (3/16) , 144 + (4/16), 140 +
(14/16), 144 + (7/16), 143 + (12/16), 153 + (13/16), 119 + (10/16) , 143 + (1/16) , 143 + (14/16) ,
144 + (3/16), 144 + (7/16) , 148 + (3/16)).

I am inclined to state that the measurements do not appear to be a sample from a normal distri-
bution. This statement follows from a comparison between the data and a normal distribution with
mean µ = 142.8073, i.e., the mean of the measurements and standard deviation σ = 7.992915. The
iqr of these measures is 1.2813, whereas the iqr of the theoretical normal distribution is approximately
10.7822, very far from that of the measurements. The iqr to stdev ratio is 0.1602982 for the data and
1.34897 for the theoretical distribution. Both of these numbers were compared not only with the theo-
retical distribution, but with concrete sample of size 12 from Normal(142.8073, 7.992915). In both cases
the numbers were very different.
The following graphs also support this reasoning: Note: although the graphs from the sample of the
theoretical normal distribution may vary widely, the graphs in this document are just a reference and
are not to be tought as the only possible graphs from this distribution. However, by looking at these
graphs and other graphs which I do not add to the document because of space constrains, the difference
between the measurements and the normal distribution is obvious.)

Data sample of size 12 from Normal(142.8073, 7.992915)
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Data sample of size 12 from Normal(142.8073, 7.992915)

(b) The variability in these measurements may be attributed to the lack of an standardized procedure used
by the students to obtain the measurements. It may be the case that students used procedures that
results in very different results as show in this data set. Also, it can be the case that the instrument
used to obtain the measurements were very different among the students. Most likely, a combination of
this two factors (procedure and instrument) lead to this amount of variability in the data.

(c) The true length of the table may lie between 143 and 145. Specifically, we can use the median to give
a better estimate median(z) = 144.031. There are not too many points in this data set, and one can
easily discard the more extreme values such as 119 10

16 , 148 3
16 and 153 13

16 . Just by inspecting the data
set we can see that 9 out of 12 estimates are between 143 and 145. Finally, I believe the median is a
better estimator than the mean (mean(z) = 142.8073) as it is not affected as much by outliers. In this
particular case the mean drops to 142.8073 on account of one outlier 119 10

16 . It is interesting to denote
that by removing these three outliers, the distribution becomes a lot more like a normal distribution
than it would otherwise.

7.7.#7:

(a) urn.model <- function (){
urn <- c(1,1,1,1,2,5,5,10,10,10)
return <- 0
for(i in 1:40){
draw <- sample(urn,1,TRUE)
return <- return + draw
}
return (return)
}
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urn.random.var <- function(n){
result <- NULL
for(i in 1:n){
result <- c(result,urn.model())
}
return (result)
}

urn <- urn.random.var(25)

(b) It does appear that the distribution of Y can be approximated by a normal distribution. The following
graphs and calculations support such conclusion:

mean(urn) = 185.24, var(urn) = 462.7733, iqr = 29, and iqr/stdev = 1.348074

8.4.#3:

(a) i. Expected value of X:

EXi =
∑

x∈X(S)

xf(x) = 1 · f(1) + 3 · f(3) + 4 · f(4) + 6 · f(6)

= 1 · 0.1 + 3 · 0.4 + 4 · 0.4 + 6 · 0.1 = 0.1 + 1.2 + 1.6 + 0.6 = 3.5
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ii. Variance of X:

V arXi = EX2
i − (EXi)

2 = 12 · f(1) + 32 · f(3) + 42 · f(4) + 62 · f(6)− 3, 52

= 0.1 + 3.6 + 6.4 + 3.6− 12.25 = 13.7− 12.25 = 1.45

(b)
P (X̄100 > 3.6) = P ( X̄100−µ

σ/
√

100
> 3.6−µ

σ/
√

100
) Substracting µ and dividing by σ√

100

= P (Zn >
3.6−3.5√
1.45/10

) Plugging in the numbers
= P (Zn >

0.1
0.1204159 ) Performing the operations

= P (Zn > 0.8304548) Performing the operations
≈ P (Z > 0.8304548) Central Limit Theorem (Z ∼ Normal(0, 1))
= 1− P (Z ≤ 0.8304548) Elementary properties of probabilities
= 1− pnorm(0.8304548) Using R
= 0.2031

8.4.#4: Let Xi = hours that two AAAA batteries will power the pointer and let Sn =
n∑
i=1

Xi. From the data we

know that n = 20, EXi = µ = 5 hours and σ = 0.5 hours. We want to find out the following probability:

P (S20 =

20∑
i=1

Xi ≥ 105)

By the CLT:
n∑
i=1

Xi ≈ Normal(nµ, nσ2)

Thus,

P (S20 ≥ 105) = 1− P (S20 ≤ 105) Fundamental properties of probabilities
≈ 1− pnorm(105, 100,

√
5) By the CLT

= 0.01267

8.4.#5:

(a) Her reasoning is supported by the Weak Law of Large Numbers. By calculating P (170.5 < Y < 199.5)
as the proportions or counts observed, i.e., P (170.5 < Y < 199.5) = δ

n , where δ = 1 if yi ∈ (170.5, 199.5)
and 0 otherwise; the student is interpreting the probabilities as the observed frequency of the event
A = {yi ∈ (170.5, 199.5)}. In the long run, this proportion should match the true proportion or
probability.

(b) I agree. These calculations follow directly from the CLT with n = 40, Y =
40∑
i=1

Xi

µ = EXi = 0.4 + 0.2 + 1 + 3 = 4.6,
σ2 = V arXi = EX2

i − (EXi)
2 = 0.4 + 0.4 + 5 + 30− (4.6)2 = 35.8− 21.16 = 14.64,

By the CLT, Y ≈ Normal(nµ, nσ2) = Normal(184,
√

585.6), and thus,

P (170.5 < Y < 199.5) = P (Y ≤ 199.5)−P (Y ≤ 170.5) = pnorm(199.5, 184,
√

585.6)−pnorm(170.5, 184,
√

585.6)

(c) The approach in (b) will produce a more accurate approximation. The reason is that in (b) the student
uses the CLT and correctly identify the distribution of Y , which is not the case in (a). In (a) the student
is approximating the value by making an inference in a single run, which can vary widly due to chance
variation. In other words, in (a) the student is making her calculations based on an specific instance or
experiment, whereas in (b) the student is relying on the theoretical normal approximation, which should
give a better approximation.
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