
15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory
and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a prob-
abilistic experiment: throwing two dice and counting the
total number of dots. Each die has six sides with1 to 6
dots. The result of a throw is thus a number between2 and
12. There are36 possible outcomes,6 for each die, which
we draw as the entries of a matrix; see Figure 16.
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Figure 16: Left: the two dice give the row index and the column
index of the entry in the matrix. Right: the most likely sum is7,
with probability 1

6
, the length of the diagonal divided by the size

of the matrix.

Basic concepts. The set of possible outcomes of an ex-
periment is thesample space, denoted asΩ. A possi-
ble outcome is anelement, x ∈ Ω. A subset of out-
comes is anevent, A ⊆ Ω. The probability or weight
of an elementx is P (x), a real number between0 and
1. For finite sample spaces, theprobability of an event is
P (A) =

∑

x∈A
P (x).

For example, in the two dice experiment, we setΩ =
{2, 3, . . . , 12}. An event could be to throw an even num-
ber. The probabilities of the different outcomes are given
in Figure 16 and we can compute

P (even) =
1 + 3 + 5 + 5 + 3 + 1

36
=

1

2
.

More formally, we call a functionP : Ω → R a probabil-
ity distribution or aprobability measure if

(i) P (x) ≥ 0 for everyx ∈ Ω;

(ii) P (A ∪̇ B) = P (A) + P (B) for all disjoint events
A ∩ B = ∅;

(iii) P (Ω) = 1.

A common example is theuniform probability distribution
defined byP (x) = P (y) for all x, y ∈ Ω. Clearly, if Ω is
finite then

P (A) =
|A|

|Ω|

for every eventA ⊆ Ω.

Union of non-disjoint events. Suppose we throw two
dice and ask what is the probability that the outcome is
even or larger than7. Write A for the event of having an
even number andB for the event that the number exceeds
7. ThenP (A) = 1

2
, P (B) = 15

36
, andP (A ∩ B) = 9

36
.

The question asks for the probability of the union ofA
andB. We get this by adding the probabilities ofA and
B and then subtracting the probability of the intersection,
because it has been added twice,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B),

which gives 6

12
+ 5

12
− 3

12
= 2

3
. If we had three events,

then we would subtract all pairwise intersections and add
back in the triplewise intersection, that is,

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

−P (A ∩ B) − P (A ∩ C)

−P (B ∩ C) + P (A ∩ B ∩ C).

Principle of inclusion-exclusion. We can generalize the
idea of compensating by subtracting ton events.

PIE THEOREM (FOR PROBABILITY). The probability
of the union ofn events is

P (

n
⋃

i=1

Ai) =

n
∑

k=1

(−1)k+1
∑

P (Ai1 ∩ . . . ∩ Aik
),

where the inner sum is over all subsets ofk events.

PROOF. Let x be an element in
⋃n

i=1
Ai andH the subset

of {1, 2, . . . , n} such thatx ∈ Ai iff i ∈ H . The contri-
bution ofx to the sum isP (x) for each odd subset ofH
and−P (x) for each even subset ofH . If we include∅ as
an even subset, then the number of odd and even subsets is
the same. We can prove this using the Binomial Theorem:

(1 − 1)n =

n
∑

i=0

(−1)i

(

n

i

)

.

But in the claimed equation, we do not account for the
empty set. Hence, there is a surplus of one odd subset and
therefore a net contribution ofP (x). This is true for every
element. The PIE Theorem for Probability follows.
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Checking hats. Supposen people get their hats returned
in random order. What is the chance that at least one gets
the correct hat? LetAi be the event that personi gets the
correct hat. Then

P (Ai) =
(n − 1)!

n!
=

1

n
.

Similarly,

P (Ai1 ∩ . . . ∩ Aik
) =

(n − k)!

n!
.

The event that at least one person gets the correct hat is
the union of theAi. Writing P = P (

⋃n

i=1
Ai) for its

probability, we have

P =
n

∑

k=1

(−1)k+1
∑

P (Ai1 ∩ . . . ∩ Aik
)

=

n
∑

k=1

(−1)k+1

(

n

k

)

(n − k)!

n!

=
n

∑

k=1

(−1)k+1 1

k!

= 1 −
1

2
+

1

3!
− . . . ±

1

n!
.

Recall from Taylor expansion of real-valued functions that
ex = 1 + x + x2/2 + x3/3! + . . .. Hence,

P = 1 − e−1 = 0.6 . . .

Inclusion-exclusion for counting. The principle of
inclusion-exclusion generally applies to measuring things.
Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of
n finite sets, we have

|
n
⋃

i=1

Ai| =

n
∑

k=1

(−1)k+1
∑

|Ai1 ∩ . . . ∩ Aik
|,

where the second sum is over all subsets ofk events.

The only difference to the PIE Theorem for Probability is
that for eachx, we count1 instead ofP (x).

Counting surjective functions. Let M andN be finite
sets, andm = |M | andn = |N | their cardinalities. Count-
ing the functions of the formf : M → N is easy. Each

x ∈ M hasn choices for its image, the choices are in-
dependent, and therefore the number of functions isnm.
How many of these functions are surjective? To answer
this question, letN = {y1, y2, . . . , yn} and letAi be the
set of functions in whichyi is not the image of any ele-
ment inM . Writing A for the set of all functions andS
for the set of all surjective functions, we have

S = A −
n
⋃

i=1

Ai.

We already know|A|. Similarly, |Ai| = (n − 1)m. Fur-
thermore, the size of the intersection ofk of theAi is

|Ai1 ∩ . . . ∩ Aik
| = (n − k)m.

We can now use inclusion-exclusion to get the number of
functions in the union, namely,

|
n
⋃

i=1

Ai| =

n
∑

k=1

(−1)k+1

(

n

k

)

(n − k)m.

To get the number of surjective functions, we subtract the
size of the union from the total number of functions,

|S| =
n

∑

k=0

(−1)k

(

n

k

)

(n − k)m.

For m < n, this number should be0, and form = n, it
should ben!. Check whether this is indeed the case for
small values ofm andn.
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