15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a probabilistic experiment: throwing two dice and counting the total number of dots. Each die has six sides with 1 to 6 dots. The result of a throw is thus a number between 2 and 12. There are 36 possible outcomes, 6 for each die, which we draw as the entries of a matrix; see Figure 16.

Figure 16: Left: the two dice give the row index and the column index of the entry in the matrix. Right: the most likely sum is 7, with probability $\frac{1}{6}$, the length of the diagonal divided by the size of the matrix.

Basic concepts. The set of possible outcomes of an experiment is the sample space, denoted as Ω. A possible outcome is an element, $x \in \Omega$. A subset of outcomes is an event, $A \subseteq \Omega$. The probability or weight of an element x is $P(x)$, a real number between 0 and 1. For finite sample spaces, the probability of an event is $P(A)=\sum_{x \in A} P(x)$.

For example, in the two dice experiment, we set $\Omega=$ $\{2,3, \ldots, 12\}$. An event could be to throw an even number. The probabilities of the different outcomes are given in Figure 16 and we can compute

$$
P(\text { even })=\frac{1+3+5+5+3+1}{36}=\frac{1}{2} .
$$

More formally, we call a function $P: \Omega \rightarrow \mathbb{R}$ a probability distribution or a probability measure if
(i) $P(x) \geq 0$ for every $x \in \Omega$;
(ii) $P(A \dot{\cup} B)=P(A)+P(B)$ for all disjoint events $A \cap B=\emptyset ;$
(iii) $P(\Omega)=1$.

A common example is the uniform probability distribution defined by $P(x)=P(y)$ for all $x, y \in \Omega$. Clearly, if Ω is finite then

$$
P(A)=\frac{|A|}{|\Omega|}
$$

for every event $A \subseteq \Omega$.

Union of non-disjoint events. Suppose we throw two dice and ask what is the probability that the outcome is even or larger than 7 . Write A for the event of having an even number and B for the event that the number exceeds 7. Then $P(A)=\frac{1}{2}, P(B)=\frac{15}{36}$, and $P(A \cap B)=\frac{9}{36}$. The question asks for the probability of the union of A and B. We get this by adding the probabilities of A and B and then subtracting the probability of the intersection, because it has been added twice,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

which gives $\frac{6}{12}+\frac{5}{12}-\frac{3}{12}=\frac{2}{3}$. If we had three events, then we would subtract all pairwise intersections and add back in the triplewise intersection, that is,

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C) \\
& -P(B \cap C)+P(A \cap B \cap C) .
\end{aligned}
$$

Principle of inclusion-exclusion. We can generalize the idea of compensating by subtracting to n events.

PIE THEOREM (FOR PROBABILITY). The probability of the union of n events is

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum P\left(A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right),
$$

where the inner sum is over all subsets of k events.
Proof. Let x be an element in $\bigcup_{i=1}^{n} A_{i}$ and H the subset of $\{1,2, \ldots, n\}$ such that $x \in A_{i}$ iff $i \in H$. The contribution of x to the sum is $P(x)$ for each odd subset of H and $-P(x)$ for each even subset of H. If we include \emptyset as an even subset, then the number of odd and even subsets is the same. We can prove this using the Binomial Theorem:

$$
(1-1)^{n}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}
$$

But in the claimed equation, we do not account for the empty set. Hence, there is a surplus of one odd subset and therefore a net contribution of $P(x)$. This is true for every element. The PIE Theorem for Probability follows.

Checking hats. Suppose n people get their hats returned in random order. What is the chance that at least one gets the correct hat? Let A_{i} be the event that person i gets the correct hat. Then

$$
P\left(A_{i}\right)=\frac{(n-1)!}{n!}=\frac{1}{n} .
$$

Similarly,

$$
P\left(A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right)=\frac{(n-k)!}{n!}
$$

The event that at least one person gets the correct hat is the union of the A_{i}. Writing $P=P\left(\bigcup_{i=1}^{n} A_{i}\right)$ for its probability, we have

$$
\begin{aligned}
P & =\sum_{k=1}^{n}(-1)^{k+1} \sum P\left(A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right) \\
& =\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} \frac{(n-k)!}{n!} \\
& =\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k!} \\
& =1-\frac{1}{2}+\frac{1}{3!}-\ldots \pm \frac{1}{n!} .
\end{aligned}
$$

Recall from Taylor expansion of real-valued functions that $e^{x}=1+x+x^{2} / 2+x^{3} / 3!+\ldots$. Hence,

$$
P=1-e^{-1}=0.6 \ldots
$$

Inclusion-exclusion for counting. The principle of inclusion-exclusion generally applies to measuring things. Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of n finite sets, we have

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k+1} \sum\left|A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right|
$$

where the second sum is over all subsets of k events.

The only difference to the PIE Theorem for Probability is that for each x, we count 1 instead of $P(x)$.

Counting surjective functions. Let M and N be finite sets, and $m=|M|$ and $n=|N|$ their cardinalities. Counting the functions of the form $f: M \rightarrow N$ is easy. Each
$x \in M$ has n choices for its image, the choices are independent, and therefore the number of functions is n^{m}. How many of these functions are surjective? To answer this question, let $N=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and let A_{i} be the set of functions in which y_{i} is not the image of any element in M. Writing A for the set of all functions and S for the set of all surjective functions, we have

$$
S=A-\bigcup_{i=1}^{n} A_{i}
$$

We already know $|A|$. Similarly, $\left|A_{i}\right|=(n-1)^{m}$. Furthermore, the size of the intersection of k of the A_{i} is

$$
\left|A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right|=(n-k)^{m}
$$

We can now use inclusion-exclusion to get the number of functions in the union, namely,

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k}(n-k)^{m}
$$

To get the number of surjective functions, we subtract the size of the union from the total number of functions,

$$
|S|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m}
$$

For $m<n$, this number should be 0 , and for $m=n$, it should be n !. Check whether this is indeed the case for small values of m and n.

