15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory
and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a prob-
abilistic experiment: throwing two dice and counting the
total number of dots. Each die has six sides witto 6
dots. The result of a throw is thus a number betw2zand
12. There are36 possible outcomes, for each die, which
we draw as the entries of a matrix; see Figure 16.
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Figure 16: Left: the two dice give the row index and the column
index of the entry in the matrix. Right: the most likely sunvijs
with probability%, the length of the diagonal divided by the size
of the matrix.

Basic concepts. The set of possible outcomes of an ex-
periment is thesample space, denoted ag). A possi-
ble outcome is arelement, x € Q. A subset of out-
comes is arevent, A C Q. The probability or weight

of an element: is P(z), a real number betweeh and

1. For finite sample spaces, theobability of an event is

P(A) =3 pea P(2).

For example, in the two dice experiment, we Set=
{2,3,...,12}. An event could be to throw an even num-
ber. The probabilities of the different outcomes are given
in Figure 16 and we can compute

1+3+5+5+3+1
36
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P(even 7

More formally, we call a functior : 2 — R a probabil-
ity distribution or aprobability measure if
(i) P(x) > 0foreveryx € Q;

(i) P(AUB) = P(A) + P(B) for all disjoint events
ANB =1

(i) P(Q) = 1.
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A common example is theniform probability distribution
defined byP(x) = P(y) forall z,y € Q. Clearly, ifQ is
finite then

Al

P(A) 9]

for every evenA C Q.

Union of non-digoint events. Suppose we throw two
dice and ask what is the probability that the outcome is
even or larger thafi. Write A for the event of having an
even number ané for the event that the number exceeds
7. ThenP(A) = 3, P(B) = 32, andP(ANB) = .
The question asks for the probability of the union of
and B. We get this by adding the probabilities dfand

B and then subtracting the probability of the intersection,

because it has been added twice,
P(AUB) P(A)+ P(B)— P(ANB),
-3 =

which gives 3 + 5 — % = 2. If we had three events,
then we would subtract all pairwise intersections and add
back in the triplewise intersection, that is,
P(AUBUCQ) P(A)+ P(B)+ P(C)
—P(ANB)—-P(ANC)
—-P(BNC)+P(ANBNC).

Principleof inclusion-exclusion. We can generalize the
idea of compensating by subtractingit@vents.

PIE THEOREM (FOR PROBABILITY). The probability
of the union ofn events is

P(U Aj)

= > (MY P4, NN A,
k=1
where the inner sum is over all subsets:avents.

PROOF. Letx be an elementit);"_;, A; andH the subset

of {1,2,...,n} such thatr € A, iff i € H. The contri-
bution of z to the sum isP(z) for each odd subset af
and—P(z) for each even subset &f. If we include( as

an even subset, then the number of odd and even subsets is
the same. We can prove this using the Binomial Theorem:

-1 = §<—1>i(?).

But in the claimed equation, we do not account for the
empty set. Hence, there is a surplus of one odd subset and
therefore a net contribution @?(z). This is true for every
element. The PIE Theorem for Probability follows.



Checking hats. Suppose: people get their hats returned

x € M hasn choices for its image, the choices are in-

in random order. What is the chance that at least one getsdependent, and therefore the number of functions’is

the correct hat? Le#l; be the event that persarmgets the
correct hat. Then

Similarly,

(n—k)!
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The event that at least one person gets the correct hat i
the union of thed;. Writing P = P(U?:1 A;) for its
probability, we have
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Recall from Taylor expansion of real-valued functions that
e =1+z+2%/2+23/31+.... Hence,

l—e'=06...

Inclusion-exclusion for counting. The principle of
inclusion-exclusion generally applies to measuring thing
Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of
n finite sets, we have

Ul
=1

where the second sum is over all subsets efents.

n
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k=1

The only difference to the PIE Theorem for Probability is
that for eachr, we countl instead ofP(z).

Counting surjective functions. Let M and N be finite
sets, andn = | M| andn = | N| their cardinalities. Count-
ing the functions of the fornf : M — N is easy. Each
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How many of these functions are surjective? To answer
this question, letV = {y1, s, ...,y } and letA; be the
set of functions in whichy; is not the image of any ele-
ment in M. Writing A for the set of all functions and

for the set of all surjective functions, we have

We already knowA|. Similarly, |4;] = (n — 1)™. Fur-

ﬁhermore, the size of the intersectionkodf the A; is

We can now use inclusion-exclusion to get the number of
functions in the union, namely,
n
n—k)™.
(7)-n

| 4l
i=1

To get the number of surjective functions, we subtract the
size of the union from the total number of functions,

n

_ Z(_l)kJrl

k=1

Form < n, this number should b&, and form = n, it
should ben!. Check whether this is indeed the case for
small values ofrn andn.



