Big-O Examples

Definition Let f and g be real-valued functions. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that

$$
|f(x)| \leq C|g(x)| \quad \text { for all } x>k
$$

Example 1 Show that $f(x)=4 x^{2}-5 x+3$ is $O\left(x^{2}\right)$.

$$
\begin{aligned}
|f(x)| & =\left|4 x^{2}-5 x+3\right| \\
& \leq\left|4 x^{2}\right|+|-5 x|+|3| \\
& \leq 4 x^{2}+5 x+3, \quad \text { for all } x>0 \\
& \leq 4 x^{2}+5 x^{2}+3 x^{2}, \quad \text { for all } x>1 \\
& \leq 12 x^{2}, \quad \text { for all } x>1
\end{aligned}
$$

We conclude that $f(x)$ is $O\left(x^{2}\right)$. Observe that $C=12$ and $k=1$ from the definition of big-O.
Example 2 Show that $f(x)=(x+5) \log _{2}\left(3 x^{2}+7\right)$ is $O\left(x \log _{2} x\right)$.

$$
\begin{aligned}
|f(x)| & =\left|(x+5) \log _{2}\left(3 x^{2}+7\right)\right| \\
& =(x+5) \log _{2}\left(3 x^{2}+7\right), \quad \text { for all } x>-5 \\
& \leq(x+5 x) \log _{2}\left(3 x^{2}+7 x^{2}\right), \quad \text { for all } x>1 \\
& \leq 6 x \log _{2}\left(10 x^{2}\right), \quad \text { for all } x>1 \\
& \leq 6 x \log _{2}\left(x^{3}\right), \quad \text { for all } x>10 \\
& \leq 18 x \log _{2} x, \quad \text { for all } x>10
\end{aligned}
$$

We conclude that $f(x)$ is $O\left(x \log _{2} x\right)$. Observe that $C=18$ and $k=10$ from the definition of big-O.
Example 3 Show that $f(x)=\left(x^{2}+5 \log _{2} x\right) /(2 x+1)$ is $O(x)$.
Since $\log _{2} x<x$ for all $x>0$, we conclude that

$$
5 \log _{2} x<5 x<5 x^{2}, \quad \text { for all } x>1
$$

Since $2 x+1>2 x$, we conclude that

$$
\frac{1}{2 x+1}<\frac{1}{2 x} \quad \text { for all } x>0
$$

Therefore,

$$
\begin{aligned}
|f(x)| & =\left|\frac{x^{2}+5 \log _{2} x}{2 x+1}\right| \\
& =\frac{x^{2}+5 \log _{2} x}{2 x+1}, \quad \text { for all } x>1 \\
& \leq \frac{x^{2}+5 x^{2}}{2 x}, \quad \text { for all } x>1 \\
& \leq 3 x, \quad \text { for all } x>1
\end{aligned}
$$

We conclude that $f(x)$ is $O(x)$. Observe that $C=3$ and $k=1$ from the definition of big-O.

