INFO I201 Midterm II

Tuesday, June 11, 2013 Duration: 80 minutes.

Instructions

- 1. Answer each question on a new page in your blue books.
- 2. You are not allowed to use any papers or notes except for one letter size sheet you are allowed to bring to exam.
- 3. Make sure you write LEGIBLY and give enough explanation whenever it is due.
- **Q1.** (6 pts) Let $A = \{\{0\}, 1, \{0, 1\}\}$ and $B = \{0, \{1\}\}$.
 - (a) Find $A \cap B$, B A, $A \cup B$, and A B.
 - (b) Find $\mathcal{P}(B)$ (the power set of B).
 - (c) List two elements in $\mathcal{P}(A)$.
 - (d) Find $\mathcal{P}(A) \cap B$.
 - (e) List two elements in the set $A \times B$.
- Q2. (2 pts) Let \mathcal{L} be a first order language with two binary predicate symbols P and Q, and one ternary predicate symbol T. Consider the formulas
 - $\phi_1 \equiv \forall x (\exists y \forall z T(x, y, z) \land \exists z \forall y T(x, y, z))$
 - $\phi_2 \equiv \forall x \exists y (P(x,y)) \longrightarrow \forall x Q(x,y)$

Determine the free and bound occurrences of all the variables in formulas ϕ_1 and ϕ_2 .

Q3. (4 pts) Let \mathcal{L} be a first order language with three unary predicate symbols A, B, and C. Consider the formulas below.

$$\phi_1 \equiv \exists x \, A(x)$$

$$\phi_2 \equiv \exists x \, B(x)$$

$$\phi_3 \equiv \exists x \, C(x)$$

$$\phi_4 \equiv \forall x (A(x) \longrightarrow B(x))$$

$$\phi_5 \equiv \forall x (B(x) \longrightarrow C(x))$$

$$\phi_5 \equiv \forall x (B(x) \longrightarrow C(x))$$

Design a model $M = (\mathbb{Z}, I)$ such that all formulas $\phi_1, \phi_2, \phi_3, \phi_4$, and ϕ_5 are true.

- **Q4.** (4 pts) (i) Let A, B and C be sets. Show that $(A B) C \subseteq A \cap \overline{B}$.
 - (ii) Let A and B be sets. Prove or disprove: $A \cap B \neq \emptyset$ implies that $A \subseteq \overline{B}$.
 - (iii) Let A, B and C be sets. Prove or disprove: $A B \neq B \cap C$ implies that $A \neq B$.

- **Q5.** (5 pts) Consider a first order language \mathcal{L} that consists of one binary predicate symbol P. Also consider the following formulas in this language:
 - $\phi_1 \equiv \exists y \forall x P(x, y) \longrightarrow \forall x \exists y P(x, y)$
 - $\phi_2 \equiv \forall x \exists y P(x, y) \longrightarrow \exists y \forall x P(x, y)$

Find one single model M=(U,I) with $U=\{a,b,c,d\}$ that makes ϕ_1 true and ϕ_2 false.

Q6. (4 pts) Consider a first order language \mathcal{L} that consists of one unary predicate symbol Q. Let ϕ be the formula:

$$\forall x \forall y [(Q(x) \land Q(y)) \longrightarrow (x = y)]$$

- (i) Let $U=\{a,b,c,d,e\}$ and $I(Q)=\{\}.$ Is ϕ valid in this model?
- (ii) Let $U' = \{a, b, c, d, e\}$ and $I'(Q) = \{d\}$. Is ϕ valid in this model?